Existence and nonexistence of positive solution for sixth-order boundary value problems

author

  • H. Mirzaei Faculty of Basic Sciences‎, ‎Sahand University of Technology‎, ‎Tabriz‎, ‎Iran.
Abstract:

‎In this paper‎, ‎we formulate the sixth-order boundary value problem as Fredholm integral equation by finding Green's function and obtain the sufficient conditions for existence and multiplicity of positive solution for this problem‎. ‎Also nonexistence results are obtained‎. ‎An example is given to illustrate the results of paper‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

existence and nonexistence of positive solution for sixth-order boundary value problems

‎in this paper‎, ‎we formulate the sixth-order boundary value problem as fredholm integral equation by finding green's function and obtain the sufficient conditions for existence and multiplicity of positive solution for this problem‎. ‎also nonexistence results are obtained‎. ‎an example is given to illustrate the results of paper‎.

full text

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

full text

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

full text

existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

in this work, by employing the krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime...

full text

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

full text

existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

in this work, by employing the krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prim...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 6

pages  1451- 1458

publication date 2016-12-18

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023