Evaluating the optimization of irradiation components of mung bean seeds with ultrasound for increased seedling vigor, using artificial neural network

Authors

Abstract:

Extended Abstract   Introduction: A large number of experimental evidence indicates the positive effect of irradiating the seed with ultrasonic waves; so that irradiation causes the production of a more vigorous seedling. Conversely, inappropriate intensity and duration of irradiation can impose deleterious effects on seedlings by damaging the enzymatic activity. There are complex inter-and intra-relations between irradiation components (pre-soaking duration, temperature, and duration of irradiation) and response variables [seedling dry weight (SDW) and percent of abnormal seedlings (PAS)]. Therefore the balance values of the irradiation components cannot be precisely obtained by mean comparison. This study aimed to optimize (finding the balance values of) irradiation components for increased SDW, but diminished PAS of mung bean, using an artificial neural network.  Materials and Methods: A factorial experiment was conducted based on a completely randomized design with three replications. The factors were six pre-soaking durations (2, 4, 6, 8, 10, and 12 hours), 5 irradiation durations (0, 3, 6, 9 and 12 minutes), and 4 irradiation temperatures (17, 22, 27, and 32 oC). The 25 seeds were chosen for each petri dish. The multi-layer perceptron neural network was used to quantify the relations between variables; the experimental factors were used as the input (regressors), and PAS and SDW as the output of the model (response variables). Results: The analysis of variance results indicated that the simple and interactive effects of factors were significant on PAS and SDW. The structure 3:3:2 of the neural network, which is based on Secant Hyperbolic function, was suitable. The SDW and PAS were negligibly different for the contribution of the factors in determining their changes. In terms of relative contribution, the factors ranked from higher to lower as irradiation duration, irradiation temperature, and pre-soaking duration. The optimized values of components of irradiation by the neural network were irradiation temperature of 17.96 oC, irradiation duration of 5.3 minutes, and pre-soaking duration of 11.25 hours. For these components, SDW was 27% higher, and PAS tended to be 0.6% lower, compared to the best component combination gotten by mean comparison. Conclusion: Due to the highly strong interaction of irradiation components on seedling growth, the effect of component (s) tends to be changed intensively with changing the quantity of each component. In terms of finding the best combination of irradiation components, the neural network was more efficient than the mean comparison. Therefore, the neural network could be used as a complementary procedure in such investigations. Highlights: 1- Irradiation components including irradiation duration and temperature, and pre-soaking duration affected seedling growth. 2- Inappropriate irradiation components diminished seedling growth to the below of no-irradiation conditions. 3- The optimum (balanced) levels of irradiation components increased seedling growth remarkably.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Modeling and Optimization of Anethole Ultrasound-Assisted Extraction from Fennel Seeds using Artificial Neural Network

Extraction of essential oils from medicinal plants has received researcher’s attention as it has a wide variety of applications in different industries. In this study, ultrasonic method has been used to facilitate the extraction of active ingredient anethole from fennel seeds. Effect of different parameters like extraction time (20, 40, and 60 min), power (80, 240, and 400 Watts) and solid part...

full text

The optimization of root nutrient content for increased sugar beet productivity using an artificial neural network

Conventional procedures are inadequate for optimizing the concentrations ofnutrients to increase the sugar yield. In this study, an artificial neural network(ANN) was used to optimize the Ca, Mg, N, K and Na content of the storage rootto increase sugar yield (Y) by increasing both sugar content (SC) and root yield(T). Data from three field experiments were used to produce a wide range ofvariati...

full text

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

optimization of nitrogen concentration of plant tissue for increased quantity and quality of tobacco leaf using an artificial neural network

nitrogen (n) affects adversely the tobacco yield quantity and quality as it increases yield, chlorine and nicotine contents, but decrease potassium content. this experiment was aimed at optimization of (the balance between) n concentration in leaf, stem and root to increase both yield quantity and quality (high potassium, low chlorine and medium nicotine contents) using artificial neural networ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue (Autumn & Winter)

pages  69- 80

publication date 2022-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023