Employing response surface analysis using for photocatalytic degradation of MTBE by nanoparticles

Authors

  • Hossein Lotfi Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • Mohammad Ebrahim Olya Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
  • Mohsen Nademi Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:

Since groundwaters are a major source of drinking water, their pollution with organic contaminants such as methyl tertiary-butyl ether (MTBE) is a very significant issue. Hence, this research investigated the photocatalytic degradation of MTBE in an aqueous solution of TiO2-ZnO-CoO nanoparticle under UV irradiation. In order to optimize photocatalytic degradation, response surface methodology was applied to assess the effects of experimental variables such as catalyst loading, initial concentration of MTBE and pH on the dye removal efficiency. The optimal condition to achieve the best degradation for the initial concentration of 30.58 mg/L of MTBE was found at a pH of 7.68 and a catalyst concentration of 1.68 g/L after 60 min.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Photocatalytic degradation of ciprofloxacin antibiotic from aqueous solution by BiFeO3 nanocomposites using response surface methodology

Ciprofloxacin antibiotic that is used to cure several kinds of bacterial infections have a high solubility capacity in water. The influent of ciprofloxacin to water resources in a low concentration affect the photosynthesis of plants, transforms the morphological structure of the algae, and then disrupts the aquatic ecosystem. 75% of this compound is excreted from the body down to the wastewate...

full text

Photocatalytic degradation of rhodamine B by nano bismuth oxide: Process modeling by response surface methodology (RSM)

The photocatalytic activity of nano-Bi2O3 was evaluated in degradation of rhodamine B (RhB) as a model of dye pollutant from waste waters. Nano sized Bi2O3 was synthesized using the chemical precipitation method. The as-prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spect...

full text

Photocatalytic degradation of rhodamine B by nano bismuth oxide: Process modeling by response surface methodology (RSM)

The photocatalytic activity of nano-Bi2O3 was evaluated in degradation of rhodamine B (RhB) as a model of dye pollutant from waste waters. Nano sized Bi2O3 was synthesized using the chemical precipitation method. The as-prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spect...

full text

Investigation of UV/TiO2-N photocatalytic degradation of AR 40 using response surface methodology (RSM)

Introduction: Advanced oxidation processes (AOPs) suggest a highly reactive, nonspecific oxidant namely hydroxyl radical (OH•), that oxidize a wide range of pollutants fast and non-selective in wastewater and water. Materials and methods: In this work, the nitrogen-doped titanium dioxide nanoparticles were primed by sol-gel method, characterized by X-ray diffraction and Scanning Elect...

full text

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology

The photocatalytic degradation of methylene blue was investigated with TiO2 and Fe2O3 nanoparticles supported on natural zeolite. The synthesized photocatalyst was characterized by XRD, XRF, FT-IR, EDX, FE-SEM, and BET analyses. The results of XRD, FT-IR, and EDX confirmed the successful loading of Fe3+ doped TiO2 nanoparticles on natural zeolite. Further, the FE-SEM results confirmed the depos...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 3

pages  127- 135

publication date 2017-04-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023