Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

author

  • Marjan Jafari Department of physics, Faculty of science, Imam Khomeini International University, Qazvin, Iran
Abstract:

We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the finite difference method, the Dirac equations of disordered graphene, reduce to the discrete matrix equation. The discrete matrix equation is solved by direct and Green’s function methods. In this method, geometry of disorder plays an important role. This method allows for an amenable inclusion of several disorder mechanisms at the microscopic level. The effect of impurity on the transmission probability and conductivity are obtained, using the electronic transport wave function. The results show that, for the conductance, geometry plays an important role. In addition, by transmission probability and using Landau formula, the Fano factor is investigated.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

electronic transmission wave function of disordered graphene by direct method and green's function method

we describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. we present a new method for computing, electronic transport wave function and greens function of the disordered graphene. in this method, based on the small rectangular approximation, break up the potential barriers in to small parts. then using the f...

full text

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

‏‎interpersonal function of language in subtitling

‏‎translation as a comunicative process is always said to be associated with various aspects of meaning loss or gain. subtitling as a mode of translating, due to special discoursal and textual conditions imposed upon it, is believed to be an obvious case of this loss or gain. presenting the spoken sound track of a film in writing and synchronizing the perception of this text by the viewers with...

15 صفحه اول

Elliptic Function Solutions of (2+1)-Dimensional Breaking Soliton Equation by Sinh-Cosh Method and Sinh-Gordon Expansion Method

In this paper, based on sinh-cosh method and sinh-Gordon expansion method,families of solutions of (2+1)-dimensional breaking soliton equation are obtained.These solutions include Jacobi elliptic function solution, soliton solution,trigonometric function solution.

full text

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2

pages  57- 68

publication date 2016-09-16

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023