Efficient Dye Removal from Aqueous Solutions Using Rhamnolipid Biosurfactants by Foam Flotation

Authors

  • Hamid Khoshdast Department of Mining Engineering, Higher Education Complex of Zarand, Zarand, I.R. IRAN
  • Vahideh Shojaei Department of Mining Engineering, Higher Education Complex of Zarand, Zarand, I.R. IRAN
Abstract:

Methylene blue was efficiently removed from aqueous solution by foam flotation using a rhamnolipid a biosurfactant as a dye collector. The effects of four parameters, namely, pH (1.5–11.5), frother concentration (5–65 ppm), aeration rate (2–6 L/min) and rhamnolipid to methylene blue weight ratio (0.5–6.5), on dye removal were studied and optimized using response surface methodology. Results showed that dye removal increases by increasing of all parameters; however, the nonlinear trend was observed for the effects of frother concentration and rhamnolipid to methylene blue ratio. Optimum removal conditions, resulting in about 93% dye removal, was achieved at pH value of 11.5, methyl isobutyl carbinol (MIBC) concentration of 35 ppm, airflow rate of 4 L/min, and rhamnolipid to methylene blue ratio of 3.5, after only 10 min flotation. Investigations also showed that the presence of electrolyte can significantly decrease the removal efficiency. Kinetics study revealed that the process follows the first order model with a rate constant of about 0.288 sec-1. This study demonstrates that rhamnolipid could be considered as a potentially efficient and environment friendly collector for the treatment of dye contaminated wastewater.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Removal of textile dye from aqueous solutions by nanofiltration process

The feasibility of employing nanofiltration (NF) in the decolorization of ionic (direct blue 86) and nonionic (disperse blue 56) dye aqueous solutions was investigated. The effects of feed concentration (60- 180 mg/l), pressure (0.5- 1.1 MPa) and pH (6- 10) were studied. Experiments were performed in a laboratory- scale set up by using a TFC commercial spiral wound polyamide nanofilter. The res...

full text

Removal of methylene blue dye by application of polyaniline nano composite from aqueous solutions

This paper deals with application of polyaniline coated on wood sawdust for removal ofmethylene blue (MB) dye from aqueous solutions. Polyaniline coated onto sawdust (termedas PAn/SD) was prepared via direct chemical polymerization onto sawdust which waspreviously soaked in the monomer (aniline) solution in acidic (HC1) media. Adsorptionexperiments were carried out using batch system. The effec...

full text

Removal of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron

Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI) in the removal of dye acid red 18 (AR18) from aqueous solutions. Materia...

full text

The Color Removal of Dye-Containing Wastewater by Cerium (IV) Sulfate from Aqueous Solutions

In this study a giant reagent such as Ce (SO4 )2 was used for removing different initial dye concentration (10-1000 mg/l) of reactive red 31 (R.R31) less than two minutes in a laboratory scale whereas the percent of dye removal efficiency was %99.9. The Langmuir, Freundlich and Tempkin adsorption models were applied to describe the equilibrium isotherms. The Langmuir model agreed very well with...

full text

Removal of hazardous reactive blue19 dye from aqueous solutions by agricultural waste

Low-cost grapefruit peel (Agricultural Waste) was used for removal of reactive blue19 dye fromaqueous solutions. The process was studied as a function of contact time, initial dye concentration andpH. Adsorption process was attained to the equilibrium within 45 min for initial dye concentrations of 50,75, and 100 mg L-1. An acidic medium was the optimum condition for adsorption of dye at roomte...

full text

Photocatalytic Removal of Malachite Green Dye from Aqueous Solutions Using Halloysite–TiO2 Nanocomposite

 Background and purpose: Malachite green is one of the most widely used dyes in various industries, aquaculture, and fungicides. The residues have adverse effects on environmental and human health and should be removed from the effluent before discharging to the environment. The purpose of this study was to investigate the efficiency of photocatalytic process using halloysite-titanium dioxide n...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 4

pages  127- 140

publication date 2019-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023