Effect of Tool Rotational Speed on the Tensile and Microstructural Properties of Friction Stir Welded Different Grades of Stainless Steel Joints
Authors
Abstract:
Friction stir welding is a relatively new solid state joining process, which is suitable for welding similar and dissimilar materials. The present research work concentrates on the effect of tool rotational speed on the tensile, microstructural properties and microhardness of the friction stir welded joints of different grades of austenitic stainless steel sheets. Four different tool rotational speeds are used in the experimentation while the other process parameters like traversing speed and the tool tilt angle are kept constant. The tensile testing, micrography and microhardness measurements were carried out in the welded samples. It is observed from the results of tensile testing that the joint made at the tool rotational speed of 1320 rpm has the maximum strength among the experimented speeds. The measured microhardness values at heat affected zone and parent metal zone have shown higher hardness than the weld zone. Fine and equi-axed grains are observed in the welded region at all experimented speeds with a negligible amount of transformation of austenite into martensite. These results have impact on the development of welding procedure for dissimilar stainless steel friction stir welding process.
similar resources
Effect of Tool Speed on Axial Force, Mechanical Properties and Weld Morphology of Friction Stir Welded Joints of A7075-T651
The axial force measurement plays important role in tool designing and identification of its restrictions. Also, it is vital in design of machine mechanism and optimization of welding process parameters. In this study, a friction stir welded butt join on AA7075-T651 aluminum alloy plate is investigated. With change of some parameters, factors including axial force, mechanical properties, microh...
full textInfluence of rotational speed on the development of microstructure in a friction stir welded 304 austenitic stainless steel
Friction stir welding was conducted on AISI 304 austenitic stainless steel sheet with dimensions of 100 mm × 100 mm × 2 mm. The FSW was performed at a welding speed of 150 mm/min and rotational speeds of 400 and 800 rpm. The results showed that high frequency of low angle grain boundaries (LAGBs) were formed through dynamic recovery in the thermo-mechanically affected zone (TMAZ). Higher amoun...
full textEffect of Different Welding Parameters on the Mechanical and Microstructural Properties of Stainless Steel 304H Welded Joints
In this research work, an attempt has been made to examine the different welding parameters which affect the weldability of 304H Austenitic stainless steel (ASS) welded joint using the proper filler wire. Chemical composition of filler wire was same as that of base metal. Further this study addressed the combined effect of various welding parameters on the metallurgical and mechanical propertie...
full textInfluence of rotational speed on the development of microstructure in a friction stir welded 304 austenitic stainless steel
Friction stir welding was conducted on AISI 304 austenitic stainless steel sheet with dimensions of 100 mm × 100 mm × 2 mm. The FSW was performed at a welding speed of 150 mm/min and rotational speeds of 400 and 800 rpm. The results showed that high frequency of low angle grain boundaries (LAGBs) were formed through dynamic recovery in the thermo-mechanically affected zone (TMAZ). Higher amoun...
full textInvestigating the Effect of Optimum Welding Parameters on the Microstructural and Mechanical Properties of St37 Steel and 316L Stainless Steel Welded by the Friction Stir Welding Process
In this research, St37 and 316L steel sheets were welded using friction stir welding (FSW) process and effective parameters such as the rotational speed, linear speed of the tool, pin diameter, and their appropriate values were studied. The microstructure, hardness, and strength of the different welding regions were investigated. It was observed that in the stir zone (SZ), a mechanical operatio...
full textThe Effect of Friction Stir Processing Speed Ratio on the Microstructure and Mechanical Properties of A 430 Ferritic Stainless Steel
This study is an attempt to investigate the effect of welding rotational and traverse speed on mechanical and microstructural properties of A 430 stainless steel in order to give an effective processing window to achieve an appropriate microstructure and so mechanical properties. There are a wide range industrial uses for ferritic stainless steel. There from they have some problems like grain c...
full textMy Resources
Journal title
volume 33 issue 1
pages 141- 147
publication date 2020-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023