Effect of Follower Force on Vibration Frequency of Magneto-Strictive-Faced Sandwich Plate with CNTR Composite Core

Authors

Abstract:

This study deals with the vibration response of sandwich plate with nano-composite core and smart magneto-strictive face sheets. Composite core is reinforced by carbon nanotubes (CNTs) and its effective elastic properties are obtained by the rule of Mixture. Terfenol-D films are used as the face sheets of sandwich due to magneto-mechanical coupling in magneto-strictive material (MsM). In order to investigate the magnetization effect on the vibration characteristics of sandwich plate, a feedback control system is utilized. Also the sandwich plate undergoes the follower forces in opposite direction of x. Based on energy method, equations of motions are derived using Reddy’s third order shear deformation theory, and Hamilton’s principle and solved by differential quadrature method (DQM). A detailed numerical study is carried out based on third-order shear deformation theory to indicate the significant effect of follower forces, volume fraction of CNTs, temperature change, core-to-face sheet thickness ratio and controller effect of velocity feedback gain on dimensionless frequency of sandwich plate. These finding can be used to automotive industry, aerospace and building industries.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free vibration analysisof soft-core composite-faced sandwich plates using three-dimensional finite element method

In this paper, natural frequencies of the sandwich plates with soft flexible core and composite face sheets are obtained. Three-Dimensional (3D) finite element method (FEM) is used for constructing and analyzing of the sandwich plates to obtain their natural frequencies. Continuity conditions for transverse shear stresses at the interfaces as well as transverse flexibility and transverse normal...

full text

free vibration analysisof soft-core composite-faced sandwich plates using three-dimensional finite element method

in this paper, natural frequencies of the sandwich plates with soft flexible core and composite face sheets are obtained. three-dimensional (3d) finite element method (fem) is used for constructing and analyzing of the sandwich plates to obtain their natural frequencies. continuity conditions for transverse shear stresses at the interfaces as well as transverse flexibility and transverse normal...

full text

effect of oral presentation on development of l2 learners grammar

this experimental study has been conducted to test the effect of oral presentation on the development of l2 learners grammar. but this oral presentation is not merely a deductive instruction of grammatical points, in this presentation two hypotheses of krashen (input and low filter hypotheses), stevicks viewpoints on grammar explanation and correction and widdowsons opinion on limited use of l1...

15 صفحه اول

Deflection and Free Vibration of Sandwich Panel with Honeycomb Core on Winkler Elastic Foundation

In this paper deflection and free vibration of sandwich panel is studied. The core of Sandwich panels is made of hexagonal honeycomb and faces are made of two different materials of Carbon Fiber Reinforced Plastic and K-aryl/epoxy covering. The governing equations are deduced from the First order Sheer Deformation Theory (FSDT) and they are solved using Generalized Differential Quadrature Metho...

full text

Free Vibration of Sandwich Panels with Smart Magneto-Rheological Layers and Flexible Cores

This is the first study on the free vibrational behavior of sandwich panels with flexible core in the presence of smart sheets of oil which is capable of the excitation of magnetic field. In order to model the core, the improved high order theory of sandwich sheets was used by a polynomial with unknown coefficients first degree shear theory was used for the sheets. The derived equations based o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  688- 701

publication date 2018-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023