Dynamic Characteristics of Joined Steel and Carbon Fiber-Reinforced Plastic Tubes: Experimental and Numerical Investigation

Authors

  • H. M. Navazi Department of Aerospace Engineering, Sharif University of Technology
  • M. Daniali Department of Aerospace Engineering, Sharif University of Technology
Abstract:

The fundamental frequencies and mode shapes of steel and carbon fiber–reinforced plastic (CFRP) cylindrical shells with steel inserts were investigated using finite element analysis and modal testing. The free-free boundary condition was tested with modal testing using the roving hammer method and verified by finite element analysis using ABAQUS. The results show good agreement between the testing and finite element analysis in both natural frequencies and mode shapes. Then, the vibrational behavior of cylindrical shells with steel/CFRP lap joints for simply supported-free and clamped-free edge conditions was studied using the verified finite element modeling, and the effects of lengths and thicknesses of composite cylinders and steel inserts on the free vibration of joined steel/CFRP were investigated. The results show that the vibrational behavior of the CFRP shell and its dimensions has a major influence on natural frequencies and mode shapes of the joined shells.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Experimental and numerical crashworthiness investigation of hybrid composite aluminum tubes under dynamic axial and oblique loadings

This research deals with axial and oblique impact crash tests on simple and hybrid composite tubes. Axial and oblique impact tests have been generated on simple and hybrid composite tubes with one, two and three layers. A drop test rig was used to conduct the experiments. Furthermore, in order to gain more detailed knowledge about the crash process, finite element simulations of the experim...

full text

Experimental and Numerical Investigation of Rock Dynamic Fracture

Rapid development of engineering activities expands through a variety of rock engineering processes such as drilling, blasting, mining and mineral processing. These activities require rock dynamic fracture mechanics method to characterize the rock behavior. Dynamic fracture toughness is an important parameter for the analysis of engineering structures under dynamic loading. Several experimental...

full text

investigation of the electronic properties of carbon and iii-v nanotubes

boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...

15 صفحه اول

experimental and numerical crashworthiness investigation of hybrid composite aluminum tubes under dynamic axial and oblique loadings

this research deals with axial and oblique impact crash tests on simple and hybrid composite tubes. axial and oblique impact tests have been generated on simple and hybrid composite tubes with one, two and three layers. a drop test rig was used to conduct the experiments. furthermore, in order to gain more detailed knowledge about the crash process, finite element simulations of the experiments...

full text

Experimental Investigation of Behavior of Glass Fiber Reinforced Concrete (GFRC)

The paper presents the results of casting and testing of 264 GFRC specimens. The glass fibers were 25 mm long, with the aspect ratio (L/D) ranging between 1250 and 3570. The parameters studied were the ratio (by weight) of fibers to cement, i.e. F/C=0%, 1.5%, 3%, and 4.5%, and the ratio of coarse to fine aggregates (gravel to sand), i.e. G/S=1.1, 0.7 and 0.2. In total, 12 mix designs were selec...

full text

Analytical and numerical modeling of erosive projectiles into steel fiber reinforced concrete target

In this paper, modeling of high speed projectiles with different nose shapes, penetrating into steel fiber reinforced concrete is investigated. This is a novel study because it considers the length to diameter ratio of steel fiber as well as projectile length to diameter ratio and volume fraction of fiber used in concrete matrix on the impact resistance of steel fiber reinforced concrete fibers...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  88- 97

publication date 2017-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023