Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method

Authors

  • Rajiv Kumar Sharma Mechanical Engineering Department, National Institute of Technology, Hamirpur, 177005, HP, India
  • Shailendra Kumar Mechanical Engineering Department, National Institute of Technology, Hamirpur, 177005, HP, India
Abstract:

Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation. The consideration to this realistic data makes cell formation problemvery complex and tedious. It leads to the invention and implementation of highly advanced and complex cell formation methods. In this paper an effort has been made to develop a simple and easy to understand/implement manufacturing cell formation heuristic procedure with considerations to the number of production and manufacturing flexibility-related parameters. The heuristic minimizes inter-cellular movement cost/time. Further, the proposed heuristic is modified for the application of principal component analysis and Taguchi’s method. Numerical example is explained to illustrate the approach. A refinement in the results is observed with adoption of principal component analysis and Taguchi’s method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis

These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...

full text

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

full text

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

full text

Formation of manufacturing cell using queuing theory and considering reliability

In this paper, a stochastic cell formation problem is studied using queuing theory framework and considering reliability. Since cell formation problem is NP-Hard, two algorithms based on genetic and modified particle swarm optimization (MPSO) algorithms are developed to solve the problem. For generating initial solutions in these algorithms, a new heuristic method is developed, which always cre...

full text

analysis and interpretation of bearing vibration data using principal component analysis and self - organizing map

induction motor bearing is one of the key parts of the machine and its analysis and interpretation are important for fault detection. in the present work vibration signal has been taken for the classification i.e. bearing is healthy (h) or defective (d). for this purpose, clustering based classification of bearing vibration data has been carried out using principal component analysis (pca) and ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 1

pages  -

publication date 2015-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023