Detection of Abnormal Behaviors in Patients with Dementia and Preliminary Symptoms in Smart Home

Authors

  • Hosseini Seno , Amin Ph.D. in Computer Network, Assistant Professor, Computer Dept., Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • Khosravi, Alireza M.Sc. in Computer, Faculty of Computer Engineering, Islamic Azad University, Nishabur Branch, Nishabur, Iran
Abstract:

Introduction: The number of elderly people who need help in their daily routines is increasing rapidly. Dementia is one of the most important causes of disability in elderly people and its outbreak has been a major burden on human societies. The purpose of this research was using intelligent home technology to monitor elderly behaviors, identify abnormal behaviors, and discover the initial signs of dementia before the onset of the disease. Early diagnosis of dementia at an early stage can lead to a high improvement in its treatment and delay the disease. Method: In this applied, descriptive-analytic study, the abnormal behavior and early symptoms of dementia were identified using machine learning techniques.  The kmedoide algorithm was used to analyze abnormal behaviors and to assess the quality of sleep as the primary symptoms of dementia, the valid PSQI questionnaire was used. Matlab 2012 was used for implementation. Results: The results in the abnormal behavioral section indicated that clustering algorithms have high efficacy in detecting abnormal behavior in smart home, and also results in early symptom examinations led to poor sleep recognition in the PSQI as a primary symptom of dementia. Conclusion: The behavior of the elderly, their abnormal behavior and early signs of diseases such as dementia can be recognized using the technology of the system under the supervision of the smart home.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the role of type-d personality, social support and self-compassion in prediction of health behaviors in coronary heart disease patients

نظر به اهمیت و تاثیر روزافزون عوامل روانی – اجتماعی در سلامت جسمی و تاثیر عوامل روان شناختی در بروز بیماریهای مختلف از جمله بیماریهای قلبی و عروقی این پژوهش با هدف کلی بررسی ارتباط تیپ شخصیتی d ، حمایت اجتماعی و خود دلسوزی در پیش بینی رفتارهای بهداشتی بیماران کرونر قلبی و تعیین تفاوت بین بیماران کرونر قلبی با و بدون جراحی و افراد سالم در این متغیرها و رفتارهای بهداشتی آنان، انجام گرفت. جامعه آ...

15 صفحه اول

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 4

pages  447- 456

publication date 2019-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023