Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate
Authors
Abstract:
Objective(s): Ketotifen fumarate (KF) is a selective and noncompetitive histamine antagonist (H1-receptor) that is used topically in the treatment of allergic conditions of rhinitis and conjunctivitis. The aim of this study was to formulate and improve an ophthalmic delivery system of KF.Ocular nanoparticles were prepared with the objective of reducing the frequency of administration and obtaining controlled release to improve the anti-inflammatory drug delivery. Materials and Methods:In the present study, ocular KF loaded Eudragit RL 100 nanoparticles were prepared using O/W solvent diffusion method. The nanoparticles were evaluated for particle size, entrapment efficiency, surface morphology, X-ray diffraction (XRD), Fourier transform spectroscopy (FTIR), and differential scanning calorimetry (DSC). In vitro release and permeation studies were also carried out on nanoparticles. Results: An average size range of 182 to 314.30 nm in diameter was obtained and encapsulation efficiency up to 95.0% was observed for all the formulations. Drug release for all formulations after 24 hr was between 65.51% and 88.82% indicating effective controlled release property of KF. The mechanism of drug release for best formulation was found to be fickian diffusion mechanism. KF nanoparticles containing high polymer concentration (1:15) presented a faster drug release and a higher drug penetration; on the contrary, nanoparticles containing low polymer concentration (1:7.5) were able to give a more sustained release of the drug and thus a slower KF permeation through the cornea. Conclusion: The study revealed that KF NPs were capable of releasing the drug for a prolonged period of time and increasing the ocular bioavailability.
similar resources
design of eudragit rl nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate
objective(s): ketotifen fumarate (kf) is a selective and noncompetitive histamine antagonist (h1-receptor) that is used topically in the treatment of allergic conditions of rhinitis and conjunctivitis. the aim of this study was to formulate and improve an ophthalmic delivery system of kf.ocular nanoparticles were prepared with the objective of reducing the frequency of administration and obtain...
full textDesign and Evaluation of Chitosan Nanoparticles as Novel Drug Carriers for the Delivery of Donepezil
The present study deals with the formulation and evaluation of chitosan nanoparticles containing donepezil hydrochloride for the targeted delivery to the brain. Nanoparticles were prepared by ionic gelation method using sodium tripolyphos-phate (TPP) as a cross linking agent followed by sonication. Nanoparticles were obtained in the average size ranging from 116.8 to 227.5 nm. Particle m...
full textFabrication and in vitro evaluation of Ketotifen Fumarate-loaded PLGA nanoparticles as a sustained delivery system
Abstract Ketotifen fumarate is a non-bronchodilator anti-asthmatic drug which inhibits the effects of certain endogenous substances known to be inflammatory mediators, and thereby exerts antiallergic activity. The present study describes the formulation of a sustained release nanoparticle (NP) drug delivery system containing ketotifen, using poly (D,L lactide-co-glycolide acid) (PLGA). Biodegra...
full textFabrication and in vitro evaluation of Ketotifen Fumarate-loaded PLGA nanoparticles as a sustained delivery system
Abstract Ketotifen fumarate is a non-bronchodilator anti-asthmatic drug which inhibits the effects of certain endogenous substances known to be inflammatory mediators, and thereby exerts antiallergic activity. The present study describes the formulation of a sustained release nanoparticle (NP) drug delivery system containing ketotifen, using poly (D,L lactide-co-glycolide acid) (PLGA). Biodegra...
full textDevelopment and evaluation of bio-nanoparticles as novel drug carriers for the delivery of Donepezil
The purpose of the present study was to formulate and evaluate donepezil loaded bio-nanoparticles for effective treatment of Alzheimer’s disease. For the preparation of bio-nanoparticles biomaterial was isolated from fruits of Carica papaya by an economic method. The biomaterial recovered from the concentrate was subjected for various physicochemical properties like color, solubility, ...
full textMy Resources
Journal title
volume 19 issue 5
pages 550- 560
publication date 2016-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023