CFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure

Authors

  • Alireza Kalani Nejad Mechanical Engineering Department, Islamic Azad University, Central Tehran Branch, Tehran, Iran
  • Hossein Tamim Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
  • Saeed Dinarvand Mechanical Engineering Department, Islamic Azad University, Central Tehran Branch, Tehran, Iran
Abstract:

The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid considering it as a single phase. The effect of Brownian motion on the heat transfer is examined. A comparison between the two studies of with and without the Brownian motion, shows that when the Brownian motion is considered, the solid volume fraction of nanoparticles has dissimilar effects on the heat transfer. The numerical results show a decrease in heat transfer with increase in particle volume fraction considering Brownian motion effects. Moreover, computed result demonstrates an increase of Nusselt number with Rayleigh number as depicted by experimental results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mixed Convection Heat Transfer of Water-Alumina Nanofluid in an Inclined and Baffled C-Shaped Enclosure

In this article, mixed convection heat transfer of alumina-water nanofluid in an inclined and baffled C-shape enclosure is studied. It is assumed that the flow is laminar and steady. There is no energy production, energy storage and viscous heat dissipation. Furthermore, the nanofluid is considered as a continuous, Newtonian and incompressible fluid. Governing equations are discretized by finit...

full text

CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid

In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...

full text

CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid

In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...

full text

Effect of nanoparticle shape on natural convection heat transfer in a square cavity with partitions using water-SiO2 nanofluid

In this paper a numerical investigation is performed to study the effects of different nanofluids on convective heat transfer enhancement in a partitioned square cavity subject to different shapes of nanoparticle using water-SiO2 nanofluid. This study has been carried out to analyze the effects of SiO2 nanoparticle, its volumetric fraction between 2 and 4%, and nanoparticle shape (i.e. blades, ...

full text

Natural Convection Heat Transfer within Octagonal Enclosure

The problem of steady, laminar and incompressible natural convection flow in an octagonalenclosure was studied. In this investigation, two horizontal walls were maintained at a constant hightemperature, two vertical walls were kept at a constant low temperature and all inclined walls wereconsidered adiabatic. The enclosure was assumed to be filled with a Bousinessq fluid. The studyincludes comp...

full text

cfd analysis of natural convection heat transfer in a square cavity with partitions utilizing al2o3 nanofluid

in the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. the vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. the nanofluid used in this study is al2o3 with the volume fraction of 20%. it is assumed that nanofluid is a single phase fluid. fluent 6.3.26 is...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 3

pages  163- 171

publication date 2016-09-13

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023