Cayley graph associated to a semihypergroup
Authors
Abstract:
The purpose of this paper is the study of Cayley graph associated to a semihypergroup(or hypergroup). In this regards first we associate a Cayley graph to every semihypergroup and then we study theproperties of this graph, such as Hamiltonian cycles in this graph. Also, by some of examples we will illustrate the properties and behavior of these Cayley graphs, in particulars we show that the properties of a Cayley graph associated to a semihypergroup is completely different with respect to the Cayley graph associated to a semigroup(group). Also, we briefly discuss on category of Cayley graphs associated to semihypergroups and construct a functor from this category to the category of digraphs. Finally, we give an application the Cayley graph of a hypergroupoid to a social network.
similar resources
A Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
full textA graph associated to spectrum of a commutative ring
Let $R$ be a commutative ring. In this paper, by using algebraic properties of $R$, we study the Hase digraph of prime ideals of $R$.
full textFinite groups admitting a connected cubic integral bi-Cayley graph
A graph is called integral if all eigenvalues of its adjacency matrix are integers. Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$. In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.
full textEigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset
Set X = { M11, M12, M22, M23, M24, Zn, T4n, SD8n, Sz(q), G2(q), V8n}, where M11, M12, M22, M23, M24 are Mathieu groups and Zn, T4n, SD8n, Sz(q), G2(q) and V8n denote the cyclic, dicyclic, semi-dihedral, Suzuki, Ree and a group of order 8n presented by V8n = < a, b | a^{2n} = b^{4} = e, aba = b^{-1}, ab^{...
full textLine graphs associated to the maximal graph
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...
full textSOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH
In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...
full textMy Resources
Journal title
volume 7 issue 2
pages 29- 49
publication date 2020-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023