Calculation and evaluation of the vital head organs dose during Neutron Therapy in Tehran Research Reactor using Zubal phantom
Authors
Abstract:
In the recent years some studies has been done to consider the capability of Tehran Research Reactor for Boron neutron capture therapy (BNCT). The purpose of this study is to evaluate the sensitive organs dose during the treatment of patient with deep brain tumor by TRR. The calculation has been carried out using the Monte Carlo code MCNPX for ZUBAL head and neck phantom. The method was tested for 3 different boron concentration injected to patient located in TRR thermal column from human head. The total dose (Dw) was defined as the sum of physical dose components (Di) multiplied by weighting factors (wi) of each dose component in a tissue. The MCNP simulations were carried out with the MCNPX version of 2.6. In order to calculate the dose absorption, the tally F4 was used. For the dose conversion, pointwise KERMA factors from ICRU-46 were directly input with DE and DF cards. Treatment time based on absorbing 20 Gy-Eq by tumor approximately from 15 to 30 minutes changes for all trials. The results indicate that increasing boron concentration causes decreasing lens and thyroid dose received. In all trials parietal lobes receive the most dese rather than other parts. It was found that fast neutron dose component has most contribution in skin and lenses doses. But for the thyroid gamma dose component has most contribution. It is considered that side-irradiation would not be safe treatment for vital organs and take long time.
similar resources
Developing the Adult Male ICRP Phantom and Evaluation the Absorbed Dose Received By Critical Organs in Head and Neck Region during the Radiotherapy of Eye Cancer
Introduction Accurate estimation of the absorbed dose in radiosensitive organs, located away from the target volume during radiotherapy, is one of the main reasons for the development of reference phantoms. The International Commission on Radiological Protection (ICRP) reference phantoms can provide a more realistic view of the human anatomy in comparison with the previously used mathematical p...
full textEstimation of neutron and gamma dose in the MNSR research reactor
In this study, the neutron and gamma doses in the dry channel and in the internal irradiation site of the Miniature Neutron Source research reactor (MNSR) has been calculated and measured. The MNSR reactor is a light water reactor with a maximum power of 30 kW and equipped with various irradiation facilities, including five irradiated sites, five irradiation sites and a dry channel. The interna...
full textExperimental evaluation of midline dose calculation methods in In vivo dosimetry using anatomic thorax phantom
Background: In vivo dosimetry is a method for estimation of overall error in the delivered dose to the patients at the end of radiotherapy process. In this research, two methods for target dose calculation were evaluated on midline and central axis of photon beams in in vivo dosimetry of thorax fields. Materials and Methods: Entrance and exit doses for anterior and lateral fields of thorax were...
full textAssessment of secondary neutron dose due to dental restorations in head and neck radiation therapy
Introduction: One of scientific concern is increasing of unwanted neutron dose to the patient, in head and neck radiation therapy due to the presence of some isotopes in dental restorations and head of medical linac. The aim of this study is to measure the equivalent dose of thermal and fast neutron due to head of Siemens Primus Linac and a healthy tooth, Amalgam, Ni-Cr alloy a...
full text10B Concentration, Phantom Size and Tumor Location Dependent Dose Enhancement and Neutron Spectra in Boron Neutron Capture Therapy
Background: The amount of average dose enhancement in tumor loaded with 10B may vary due to various factors in boron neutron capture therapy.Objective: This study aims to evaluate dose enhancement in tumor loaded with 10B under influence of various factors and investigate the dependence of this dose enhancement on neutron spectra changes.Material and Methods: In this simulation stud...
full textdeveloping the adult male icrp phantom and evaluation the absorbed dose received by critical organs in head and neck region during the radiotherapy of eye cancer
introduction accurate estimation of the absorbed dose in radiosensitive organs, located away from the target volume during radiotherapy, is one of the main reasons for the development of reference phantoms. the international commission on radiological protection (icrp) reference phantoms can provide a more realistic view of the human anatomy in comparison with the previously used mathematical p...
full textMy Resources
Journal title
volume 7 issue 3
pages 13- 18
publication date 2019-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023