Bi-objective Build-to-order Supply Chain Problem with Customer Utility
Authors
Abstract:
Taking into account competitive markets, manufacturers attend more customer’s personalization. Accordingly, build-to-order systems have been given more attention in recent years. In these systems, the customer is a very important asset for us and has been paid less attention in the previous studies. This paper introduces a new build-to-order problem in the supply chain. This study focuses on both manufacturer's profit and customer's utility simultaneously where demand is dependent on customer's utility. The customer's utility is a behavior based upon utility function that depends on quality and price and customer's preferences. The new bi-objective non-linear problem is a multi-period, multi-product and three-echelon supply chain in order to increase manufacturer's profit and customer's utility simultaneously. Solving the complicated problem, two multi-objective meta-heuristics, namely non-dominated ranked genetic algorithm (NRGA) and non-dominated sorting genetic algorithm (NSGA-II), were used to solve the given problem. Finally, the outcomes obtained by these meta-heuristics are analyzed.
similar resources
Benders decomposition algorithm for a green closed-loop supply chain under a build-to-order environment
Nowadays, researches pay more attention to environmental concerns consisted of various communities. This study proposes a multi-echelon, multi-period closed-loop supply chain (CLSC). A comprehensive model considers the selection of selection of technology and environmental effects. The supply chain is under a build-to-order (BTO) environment. So, there is not a final product inventory. Also, th...
full textA Bi-objective Mathematical Model for Closed-loop Supply Chain Network Design Problem
In this paper, a bi-objective mixed-integer linear optimization model for Closed-loop Supply Chain Network Design Problem (CLSCND) is developed. The proposed model includes both the forward and reverse directions and includes different types of facilities, namely, manufacturing/remanufacturing centers, warehouses, and disassembly centers. The first objective function tried to minimize the total...
full textOptimizing Bi-Objective Multi-Commodity Tri-Echelon Supply Chain Network
The competitive market and declined economy have increased the relevant importance of making supply chain network efficient. This has created many motivations to reduce the cost of services, and simultaneously, to increase the quality of them. The network as a tri-echelon one consists of Suppliers, Warehouses or Distribution Centers (DCs), and Retailer nodes. To bring the problem closer to real...
full textIncorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling
This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to c...
full textSolving a bi-objective manpower scheduling problem considering the utility of objective functions
This paper presents a novel bi-objective manpower scheduling problem that minimizes the penalty resulted from employees’ assignment at lower skill levels than their real skill and maximizes employees’ utility for working at a special skill level in some shifts or on some days. Employees are classified in two specialist groups and three skill levels in each specialization. In addition, the prese...
full textA bi-level linear multi-objective decision making model with interval coefficients for supply chain coordination
Abstract: Bi-level programming, a tool for modeling decentralized decisions, consists of the objective(s) of the leader at its first level and that is of the follower at the second level. Three level programming results when second level is itself a bi-level programming. By extending this idea it is possible to define multi-level programs with any number of levels. Supply chain planning problem...
full textMy Resources
Journal title
volume 31 issue 7
pages 1066- 1073
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023