Bending Analysis of Carbon Nanotubes with Small Initial Curvature Embedded on an Elastic Medium Based on Nonlocal Elasticity and Galerkin Method

Authors

  • A. Arefi MSc Student, Department of Mechanical Engineering, Isfahan University of Technology
  • M. Salimi Professor, Department of Mechanical Engineering, Isfahan University of Technology
Abstract:

Carbon nanotubes have an important role in reinforcing nanocomposits. Many experimental observations have shown that in the most nanostructures such as nanocomposites, carbon nanotubes (CNTs) are often characterized by a certain degree of waviness along their axial direction. In the present paper, the effects of initial curvature, influence of surrounding medium that is modeled as Winkler elastic foundation on behavior of slightly curved carbon nanotubes are investigated. To capture the small size effects, nonlocal elasticity theory is implemented. Bending governing equations are derived using the principle of minimum total potential energy and these nonlinear equations are solved by Newton Raphson method. It is shown that the larger the initial curvature, the higher deflection can occur. Furthermore, neglecting the effect of initial curvature of CNTs can lead to incorrect results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...

full text

Thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics

This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...

full text

Thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics

This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...

full text

Analysis of Nonlinear Vibrations for Multi-walled Carbon Nanotubes Embedded in an Elastic Medium

Nonlinear free vibration analysis of double-walled carbon nanotubes (DWCNTs) embedded in an elastic medium is studied in this paper based on classical (local) Euler-Bernoulli beam theory. Using the averaging method, the nonlinear free vibration responses of DWCNTs are obtained. The result is compared with the obtained results from the harmonic balance method for single-walled carbon nanotubes (...

full text

Small Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-plane Pre-load Via Nonlocal Elasticity Theory

In this study, the free vibration behavior of orthotropic rectangular graphene sheet embedded in an elastic medium under biaxial pre-load is studied. Using the nonlocal elasticity theory, the governing equation is derived for single-layered graphene sheets (SLGS). Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. To verify the a...

full text

the effect of carbon nanotubes on buckling analysis of embedded oil pipes resting on elastic medium

the theoretical and experimental investigation on the thermo-mechanical properties of carbon nanotube (cnt) as reinforcer for oil and gas pipes has increasingly become a hot research area for many engineers and material scientists in recent years. this is mainly due to the advent of the new composite material systems that exhibit exotic material and mechanical properties as compared to the trad...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  27- 36

publication date 2012-12-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023