Assessment of Different Training Methods in an Artificial Neural Network to Calculate 2D Dose Distribution in Radiotherapy
Authors
Abstract:
Introduction: Treatment planning is the most important part of treatment. One of the important entries into treatment planning systems is the beam dose distribution data which maybe typically measured or calculated in a long time. This study aimed at shortening the time of dose calculations using artificial neural network (ANN) and finding the best method of training the ANN using Monte Carlo-N-particle (MCNP5) modeling. Material and Methods: Back-propagation learning algorithm was applied to design the neural network. The ANN was trained by MCNP5 calculations, and different kinds of methods were tested to determine the best method for training. In order to evaluate the accuracy of the ANN, the beam profiles and percentage depth dose (PDD) in the field size of 15×15 cm2 were anticipated by ANN using various training methods. Eventually, the results were compared with those obtained from the MCNP5 code. Results: There were good agreements between the results of comparing MCNP5 calculations with experimental measurements. Among the different training methods, Trainbfg had the least error for calculation of PDD and beam profile. Conclusion: The best training method was found to be Trainbfg, and the results revealed the sufficient accuracy of the modeled ANN.
similar resources
Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...
full textAn application of artificial neural network to maintenance management
This study shows the usefulness of Artificial Neural Network (ANN) in maintenance planning and man-agement. An ANN model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. The model achieved an accuracy of over 70% in predicting the expected downtime.
full textscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
an investigation of accuracy and complexity across different proficiency levels in written narrative task
abstract this quasi-experimental study was aimed at examining the impact of storyline complexity on the grammatical accuracy and complexity of advanced and intermediate efl learners. a total of 65 advanced and intermediate efl learners were selected from iran language institute (ili). an intact group including 35 intermediate participants and another intact group with 30 advanced participants ...
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولMy Resources
Journal title
volume 17 issue 2
pages 114- 119
publication date 2020-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023