Applications of higher order shear deformation theories on stress distribution in a five layer sandwich plate

Authors

  • Hamed Raissi Department of Mechanical engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Mohammad Shishesaz Department of Mechanical engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Shapour Moradi Department of Mechanical engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Abstract:

In this paper, layerwise theory (LT) along with the first, second and third-order shear deformation theories (FSDT, SSDT and TSDT) are used to determine the stress distribution in a simply supported square sandwich plate subjected to a uniformly distributed load. Two functionally graded (FG) face sheets encapsulate an elastomeric core while two epoxy adhesive layers adhere the core to the face sheets. The sandwich plate is assumed to be symmetric with respect to its core mid-plane. First, second and third-order shear deformation theories are used to model shear distribution in the adhesive layers as well as others. Results obtained from the three theories are compared with those of finite element solution. Results indicate that finite element analysis (FEA) and LT based on the first, second and third-order shear deformation theories give almost the same estimations on planar stresses. Moreover, the out-of-plane shear stresses obtained by FEA, are slightly different from those of LT based on FSDT. The differences are decreased on using LT based on SSDT or TSDT. Additionally, SSDT and TSDT predict almost the same distribution for the two planer stress and out-of-plane shear stress components along the face sheet thickness. Furthermore, third-order shear deformation theory seems to be more appropriate for prediction of out-of-plane shear stress at lower values of a/h ratio.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Free Vibration of a Thick Sandwich Plate Using Higher Order Shear Deformation Theory and DQM for Different Boundary Conditions

In this paper, the effect of different boundary conditions on the free vibration analysis response of a sandwich plate is presented using the higher order shear deformation theory. The face sheets are orthotropic laminated composites that follow the first order shear deformation theory (FSDT) based on the Rissners-Mindlin (RM) kinematics field. The motion equations are derived considering the c...

full text

Efficient Higher-Order Shear Deformation Theories for Instability Analysis of Plates Carrying a Mass Moving on an Elliptical Path

The dynamic performance of structures under traveling loads should be exactly analyzed to have a safe and reasonable structural design. Different higher-order shear deformation theories are proposed in this paper to analyze the dynamic stability of thick elastic plates carrying a moving mass. The displacement fields of different theories are chosen based upon variations along the thickness as c...

full text

free vibration of thick sandwich plate using higher order shear deformation theory and dqm for difference boundary conditions

in this paper, the effect of different boundary conditions on the free vibration analysis response of a sandwich plates is presented using higher order shear deformation theory. the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (fsdt) based on rissners-mindlin (rm) kinematics field. based on energy method and hamilton's principle, the ...

full text

Free Vibration and Transient Response of Heterogeneous Piezoelectric Sandwich Annular Plate Using Third-Order Shear Deformation Assumption

Based on the third-order shear deformation theory (TSDT), this paper numerically investigates the natural frequencies and time response of three-layered annular plate with functionally graded materials (FGMs) sheet core and piezoelectric face sheets, under initial external electric voltage. The impressive material specifications of FGM core are assumed to vary continuously across the plate thic...

full text

Vibration Analysis of FG Micro-Beam Based on the Third Order Shear Deformation and Modified Couple Stress Theories

In this paper, free vibration analysis and forced vibration analysis of FG doubly clamped micro-beams is studied based on the third order shear deformation and modified couple stress theories. The size dependent dynamic equilibrium equations and both the classical and non-classical boundary conditions are derived using a variational approach. It is assumed that all properties of the FG micro-be...

full text

Analysis of Bending and Buckling of Circular Porous Plate Using First-Order Shear Deformation Theory

Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to investigate the effect of porosity in axial symmetry in bending and buckling load sheet for analysis. For this purpose, a circular p...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 48  issue 2

pages  233- 252

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023