Analytical Analysis of Capacitive Pressure Sensor with Clamped Diaphragm (RESEARCH NOTE)

Authors

Abstract:

Abstract   In this paper analytical analysis of capacitive pressure sensor with clamped diaphragm is presented. Mechanical and electrical properties of the sensor are theoretically analyzed based on theory of thin plates with small deflection and the results are evaluated by use of finite element analysis. The central deflection and capacitance values under uniform external pressure are calculated. Comparison of theoretical results shows good agreement with finite element analysis. The results indicate that the mathematical model has a high accuracy to determine the sensor behaviors.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Simulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm

This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...

full text

Accurate Determination of the Pull-in Voltage for MEMS Capacitive Microphone with Clamped Square Diaphragm

Accurate determination of the pull-in, or the collapse voltage is critical in the design process. In this paper an analytical method is presented that provides a more accurate determination of the pull-in voltage for MEMS capacitive devices with clamped square diaphragm. The method incorporates both the linearized modle of the electrostatic force and the nonlinear deflection model of a clamped ...

full text

Design of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane

This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...

full text

Capacitive Flux Compression Generator (RESEARCH NOTE)

Conventional Flux Compression Generators (FCG's) are used to generate high power DC pulses. A new kind of (FCG's) with series capacitance called Capacitive Flux Compression Generator (CFCG) will be introduced and explained in this paper. This new kind is used to generate modulated high power pulses. There are some problems to establish a capacitance in high power and high frequency applications...

full text

Modelling of Resonance Frequency of MEMS Corrugated Diaphragm for Capacitive Acoustic Sensors (TECHNICAL NOTE)

In this paper, a new model for resonance frequency of clamped circular corrugated diaphragm has been presented. First, an analytical analyzes has been carried out to derive mathematic expressions for mechanical sensitivity of diaphragm with residual stress. Next by using Rayleigh's method we present mathematical model to calculate the resonance frequency of corrugated diaphragm and investigate ...

full text

Modeling of capacitance and sensitivity of a MEMS pressure sensor

In this paper modeling of capacitance and sensitivity for MEMS capacitive pressure sensor is presented. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes versus pressure. Therefore first the diaphragm displacement, capacitance and sensitivity of sensor with square diaphragm have been modeled and then simulated using finite element method (FEM).  It can b...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 26  issue 3

pages  297- 302

publication date 2013-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023