An extended of multiple criteria data envelopment analysis models for ratio data

author

  • Javad Gerami Department of mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Abstract:

One of the problems of the data envelopment analysis traditional models in the multiple form that is the weights corresponding to certain inputs and outputs are considered zero in the calculation of efficiency and this means that not all input and output components are utilized for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency score of the under evaluation unit not to be calculated correctly. One of the ways to deal with the pseudo-inefficiency is to use data envelopment analysis models with multi-criteria structure. In this regard, we first investigate the models of data envelopment analysis with multi-criteria structure and further, with regard to the ability of the ratio-based data envelopment analysis models, we develop data envelopment analysis models with a multi-criteria structure for ratio data and the feasibility and the bounded condition of the above models and their efficiency intervals are described. By presenting a numerical example, we compare the efficiency scores obtained from the models presented with the previous models and we show that the proposed models can be used to deal with the pseudo-inefficiency and efficiency underestimation. Finally, we present the results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Efficiency of Centralized Structures in Data Envelopment Analysis Ratio Models

This paper investigates the centralized resource allocation with centralized structures by using the data envelopment analysis-ratio (DEA-R) models. To this end, it proposes a method to determine the resource allocation of centralized structures such that the ratio of inputs to outputs are minimized.

full text

Generalized Fuzzy Inverse Data envelopment Analysis Models

Traditional DEA models do not deal with imprecise data and assume that the data for all inputs and outputs are known exactly. Inverse DEA models can be used to estimate inputs for a DMU when some or all outputs and efficiency level of this DMU are increased or preserved. this paper studies the inverse DEA for fuzzy data. This paper proposes generalized inverse DEA in fuzzy data envelopment anal...

full text

Fuzzy Data Envelopment Analysis for Classification of Streaming Data

The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...

full text

Fuzzy Data Envelopment Analysis for Classification of Streaming Data

The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...

full text

Data envelopment analysis for imprecise data in Buyer-Seller Relationship

In the environment of business‐to‐business e‐commerce, Buyers and sellers in mature industrial markets can turn single transactions into long-term beneficial relationships by a deeper understanding of the complex connection between the two and buyers and sellers are uncertain about their roles. A “must-do” for the sellers, in particular, is to understand patterns of investment and reward,...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 4

pages  1361- 1386

publication date 2017-10-25

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023