An Estimation of Wave Attenuation Factor in Ultrasonic Assisted Gravity Drainage Process
Authors
Abstract:
It has been proved that ultrasonic energy can considerably increase the amount of oil recovery in an immiscible displacement process. Although many studies have been performed on investigating the roles of ultrasonic waves, based on the best of our knowledge, little attention has been paid to evaluate wave attenuation parameter, which is an important parameter in the determination of the energy delivered to the porous medium. In this study, free fall gravity drainage process is investigated in a glass bead porous medium. Kerosene and Dorud crude oil are used as the wetting phases and air is used as the non-wetting phase. A piston-like displacement model with considering constant capillary pressure and applying Corey type approximation for relative permeabilities of both wetting and nonwetting phases is applied. A pressure term is considered to describe the presence of ultrasonic waves and the attenuation factor of ultrasonic waves is calculated by evaluating the value of external pressure applied to enhance the flow using the history matching of the data in the presence and absence of ultrasonic waves. The results introduce the attenuation factor as an important parameter in the process of ultrasonic assisted gravity drainage. The results show that only a low percentage of the ultrasonic energy (5.8% for Dorud crude oil and 3.3% for kerosene) is delivered to the flow of the fluid; however, a high increase in oil recovery enhancement (15% for Dorud crude oil and 12% for Kerosene) is observed in the experiments. This proves that the ultrasonic waves, even when the contribution is not substantial, can be a significantly efficient method for flow enhancement.
similar resources
an estimation of wave attenuation factor in ultrasonic assisted gravity drainage process
it has been proved that ultrasonic energy can considerably increase the amount of oil recovery in animmiscible displacement process. although many studies have been performed on investigating theroles of ultrasonic waves, based on the best of our knowledge, little attention has been paid to evaluatewave attenuation parameter, which is an important parameter in the determination of the energydel...
full textNumerical and analytical investigation of an ultrasonic assisted ECAP process
One of the great challenges in the processing of materials using Equal Channel Angular Pressing (ECAP) is the high forming forces required to produce large shear deformation in the material. Researchers show that the friction forces between the die and the sample constitute a great part of the total forming forces. Recently, ultrasonic vibrations are successfully implemented into the ECAP proce...
full textnumerical and analytical investigation of an ultrasonic assisted ecap process
one of the great challenges in the processing of materials using equal channel angular pressing (ecap) is the high forming forces required to produce large shear deformation in the material. researchers show that the friction forces between the die and the sample constitute a great part of the total forming forces. recently, ultrasonic vibrations are successfully implemented into the ecap proce...
full textExperimental Study and Modeling of Gravity Drainage during WAG Process in Fractured Carbonate Rocks
The experimental study and modeling of gravity drainage during Water Alternative Gas Injection, WAG process, in carbonate rock for one of the Iranian off-shore reservoir at lab-scale were carried out. The mechanism of gravity drainage during the WAG process, and its contribution to the oil recovery in the fract...
full textNeural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes
Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...
full textAN EXPERIMENTAL INVESTIGATION OF GRAVITY DRAINAGE DURING IMMISCIBLE GAS INJECTION IN CARBONATE ROCKS UNDER RESERVOIR CONDITIONS
Gravity drainage is one of the important recovery mechanisms in fractured carbonate and conventional reservoirs. It occurs due to density difference between the gas in fracture and the oil in matrix as well as in conventional tilted reservoirs. Oil phase will form films which are produced under gravity forces (film flow). Many gas injection experiments have been done on laboratory scales with d...
full textMy Resources
Journal title
volume 3 issue 1
pages 22- 33
publication date 2014-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023