Ammonium nitrate as an efficient and green reagent for the oxidation of alcohols into their corresponding carbonyl compounds in the presence of heteropoly acids
Authors
Abstract:
Simple, cheap and green protocol for effective conversion of alcohols to corresponding carbonyl compounds in the presence of H14[NaP5W30O110] and ammonium nitrate is reported. The products were characterized by FT-IR and comparison of their physical properties with those reported in the literatures. The progress of the reaction was monitored by thin layer chromatography (TLC) technique. The aliphatic products were detected by gas chromatography–flame ionization detector. Reactions were completed within 15-35 minutes at room temperature. In order to investigate the catalyst reusability, the oxidation of benzyl alcohol was carried out in the presence of H14[NaP5W30O110]. At the end of each reaction, the catalyst was separated and the recovered catalyst was reused for at least three runs without significant degradation in catalytic activity and performance.
similar resources
ammonium nitrate as an efficient and green reagent for the oxidation of alcohols into their corresponding carbonyl compounds in the presence of heteropoly acids
simple, cheap and green protocol for effective conversion of alcohols to corresponding carbonyl compounds in the presence of h14[nap5w30o110] and ammonium nitrate is reported. the products were characterized by ft-ir and comparison of their physical properties with those reported in the literatures. the progress of the reaction was monitored by thin layer chromatography (tlc) technique. the ali...
full textnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Magnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant
Zinc ferrite (ZnFe2O4) nanoparticles were synthesized via the auto-combustion assisted sol-gel method of Zn2+ and Fe3+ ions (molar ratio 1:2) in ammonia solution. The prepared nanomagnetic catalyst was characterized by IR, XRD, SEM and ICP. The diameter of the ZnFe2O4 MNPs (63.7 nm) was determined by Debye-Scherre equation via their XRD pattern. Nanomagnetic ZnFe2O4 efficiently catalyzes oxidat...
full textMagnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant
Zinc ferrite (ZnFe2O4) nanoparticles were synthesized via the auto-combustion assisted sol-gel method of Zn2+ and Fe3+ ions (molar ratio 1:2) in ammonia solution. The prepared nanomagnetic catalyst was characterized by IR, XRD, SEM and ICP. The diameter of the ZnFe2O4 MNPs (63.7 nm) was determined by Debye-Scherre equation via their XRD pattern. Nanomagnetic ZnFe2O4 efficiently catalyzes oxidat...
full textMagnetic NiFe2O4 Nanoparticles as an Efficient Catalyst for the Oxidation of Alcohols to Carbonyl Compounds in the Presence of Oxone as an Oxidant
Nanomagnetic NiFe2O4 was used as the efficient, stable, reusable catalyst for selective oxidation of alcohols to their corresponding carbonyl compounds using oxone (potassium hydrogen monopersulfate) as oxidant in the presence of water as solvent at room temperature. The oxidation of various primary and secondary alcohols has been examined and related corresponding products were obtained wi...
full textextraction and characterization of allium irancum plant extract and its application in the green synthesis of silver nano particles and oxidation of thiocarbony1 compounds
سنتز سبز نانوذرات فلزی (nps) درسالهای اخیر توجه بسیارزیادی را به خود جلب کرده است. زیرا این پروتوکل کم هزینه وسازگار با محیط زیست از روش های استاندارد سنتز. در این پایان نامه ما گزارش میکنیم یک روش ساده و سازگار با محیط زیست برای سنتز نانوذرات نقره با استفاده از محلول آبی عصاره گیاه allium iranicum به عنوان یک عامل کاهش دهنده ی طبیعی. نانو ذرات نقره مشخص شد با استفاده از تکنیک های uv-visible، x...
My Resources
Journal title
volume 3 issue Issue 2, pp. 85-179
pages 146- 158
publication date 2015-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023