Advanced Exergoeconomic Analysis of C3MR, MFC and DMR ‎Refrigeration Cycles in an Integrated Cryogenic Process

Authors

  • Reza Shirmohammadi Renewable Energies and Environmental Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
  • Vahid Ghazizadeh Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Abstract:

C3MR, MFC, and DMR processes in an integrated LNG-NGL-NRU structure are investigated using the conventional and advanced exergy and exergoeconomic analyses. The results of advanced exergy analysis reveal that in most of the equipment, the highest amount of irreversibility is occurred because of endogenous exergy destruction. In C3MR process, compressor C5 with 9730 kW; in MFC process, compressor C1 with 6342 kW; and in DMR process, compressor C3 with 10008 kW; have the most amount of avoidable endogenous exergy destruction in comparison with the other equipment. According to the advanced exergoeconomic analysis, the amount of endogenous part of exergy destruction cost and investment cost is higher than the exogenous part for most of the equipment, representing that interactions among the equipment is not considerable. Compressors have the highest amount of avoidable endogenous investment cost in all of the processes. Furthermore, in C3MR process, HX2 heat exchanger with 1121 $/h; in MFC process, compressor C1 with 450 $/h; and in DMR process, HX3 heat exchanger with 3955 $/h; have the most amount of avoidable endogenous exergy destruction cost. Based on total costs defined for the equipment, in C3MR process, HX2 heat exchanger with 1126 $/h should be modified. In MFC process, compressor C1 with 504.7 $/h should be considered. In DMR process, HX3 heat exchanger with 3963 $/h should be improved its performance. Finally, sensitivity analysis as well as validation have been conducted, and three different strategies are used to reduce the cost of avoidable exergy destruction of system equipment.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Evaluation of an Integrated Cryogenic Natural Gas Process with the Aid of Advanced Exergy and Exergoeconomic Analyses

In this study, an integrated structure of the air separation unit, natural gas liquids recovery equipped with nitrogen removal unit is developed. In this regard, advanced exergy and exergoeconomic analyses are used to examine the irreversibility, possible improvements and the cost of the inefficiencies of the process. The exergy analysis presents information on the origin of the irreversibility...

full text

Exergoeconomic Evaluation of LNG and NGL Co-production Process Based on the MFC Refrigeration Systems

In this paper, exergy and exergoeconomic analysis is performed on the recently proposed process forthe coproduction of liquefied natural gas (LNG) and natural gas liquids (NGL) based on the mixedfluid cascade (MFC) refrigeration systems, as one of the most important and popular natural gasliquefaction processes. To carry out this analysis, at first, the proposed process is sim...

full text

Advanced Exergy Evaluation of an Integrated Separation Process with Optimized Refrigeration System

Advanced exergy analysis is a tool to split the exergy destruction of the system to achieve a better perspective about the potentials of a system for improvements. In addition, the component interactions and their exergy destruction dependency with the other equipment are investigated through the advanced exergy analysis. For this purpose, it divides the exergy destruction calculated by convent...

full text

Exergoeconomic Evaluation of an Integrated Nitrogen Rejection Unit with LNG and NGL Co-Production Processes Based on the MFC and Absorbtion Refrigeration Systems

Natural gas is often associated with nitrogen and heavy compounds. The Heavy components in the natural gas not only can feed downstream units, owing to the low temperature process may be formed solid as well. Therefore, heavy components separation can be a necessity and produce useful products. Virtually, all natural gases are containing nitrogen ​​that would lower the heating value of natural ...

full text

advanced exergy evaluation of an integrated separation process with optimized refrigeration system

advanced exergy analysis is a tool to split the exergy destruction of the system to achieve a better perspective about the potentials of a system for improvements. in addition, the component interactions and their exergy destruction dependency with the other equipment are investigated through the advanced exergy analysis. for this purpose, it divides the exergy destruction calculated by convent...

full text

Conventional and Advanced Exergetic and Exergoeconomic Analysis of an IRSOFC-GT-ORC Hybrid System

Due to the necessity of using highly efficient power generation systems to reduce fuel consumption and air pollution, the integration of different energy systems is promising modification to achieve higher efficiency. In this paper, the integration of an Internal Reforming Solid Oxide Fuel Cell (IRSOFC)-Gas Turbine (GT)-Organic Rankine Cycle (ORC) system has been proposed. In this regard, therm...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  41- 71

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023