Adsorption of ozone molecules on AlP-codoped stanene nanosheet: A density functional theory study
author
Abstract:
Density functional theory calculations were carried out to investigate the structural and electronicproperties of the adsorption of O3 molecules on AlP-codoped monolayers to fully exploit the gas sensingcapability of these two-dimensional materials. Various adsorption sites of O3 molecule on the considerednanosheets were examined in detail. The side oxygen atoms of the O3 molecule strongly bind to the tinatoms, and provide double contacting point between the nanosheet and O3 molecule. O3 adsorptionon the Al-site of AlP-codoped structure is more favorable in energy than that on the pristine one. AlPcodopedstanene exhibits better semiconductor characteristics because of the band gap opening in thesystem. The total electron density plots show the charge distribution along the interacting side oxygenand tin atoms, which indicate the formation of chemical bonds between them. This formation of chemicalbond was also evidenced by the projected density of states diagrams. The large overlaps between thePDOS spectra of the oxygen and tin atoms show the formation of chemical bonds between these atoms.The charge density difference calculations represent charge accumulation on the adsorbed O3 molecule.Our results suggest a theoretical basis for AlP-codoped stanene monolayer as efficient candidate forapplication in gas sensor devices.
similar resources
Exploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study
The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs ...
full textAdsorption of H2S molecule on TiO2/Au nanocomposites: A density functional theory study
The adsorption of hydrogen sulfide molecule on undoped and N-doped TiO2/Au nanocomposites was investigated by density functional theory (DFT) calculations. The results showed that the adsorption energies of H2S on the nanocomposites follow the order of 2N doped (Ti site)>N-doped (Ti site)>Undoped (Ti site). The structural properties including bond lengths, angles<span id="...
full textDensity functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles
Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...
full textDensity functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles
Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...
full textElectronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations
The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
full textA Density Functional Theory Study of Structure of Phosphonic Acid
The molecular structure of the stable conformation of phosphonic acid in gas phase has beencomputed by employing complete geometry optimization in Density Functional Theory(DFT) methods. The methods used for calculations are B3LYP, BP86 and B3PW91 that havebeen studied in two series of basis sets: D95** and 6-31+G(d,p) for hydrogen and oxygenatoms; LANL2DZ for phosphorus. Bond lengths and angle...
full textMy Resources
Journal title
volume 6 issue 1
pages 60- 71
publication date 2019-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023