Accuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.
Authors
Abstract:
Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current research aims to compare Elman and Jordan recurrent networks for error distribution and validation to estimate atmospheric particular matters concentration in Ahvaz city. The used parameters are relative humidity, air pressure, and temperature and aerosol optical depth. The latter one is extracted from MODIS sensor images and air pollution monitoring stations. The results show that Jordan model with RMSE of 219.9 milligram per cubic meter has more accuracy rather than Elman model with RMSE of 228.5. The value of R2 index that shows the linear relation between the estimated from the model and observed values for Jordan is equal to 0.5 that implies 50% estimation accuracy. The value is because of MODIS spatial resolution, inadequacy in numbers as well as spatial distribution of meteorological station inside the study area. According to the results of the current research, it seems that air pollution monitoring stations have to increase in terms of numbers and suitable spatial distribution. Also, other ancillary data like volunteer geographic air pollution data entry using mobile connected cheap sensors as portable stations may be used to implement more accurate simulation for air pollution.
similar resources
a comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولUncertainty of Artificial Neural Networks for Daily Evaporation Prediction (Case Study: Rasht and Manjil Stations)
This research uses the multilayer perceptron (MLP) model to predict daily evaporation at two synoptic stations located in Rasht and Manjil, Guilan province, in north-west of Iran. Initially the most important combinations of climatic parameters for both of the stations were identified using the gamma test; and daily evaporation were modeled based on the obtained optimal combination. The results...
full textscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
a case study of the two translators of the holy quran: tahereh saffarzadeh and laleh bakhtiar
بطورکلی، کتاب های مقدسی همچون قران کریم را خوانندگان میتوان مطابق با پیش زمینه های مختلفی که درند درک کنند. محقق تلاش کرده نقش پیش زمینه اجتماعی-فرهنگی را روی ایدئولوژی های مترجمین زن و در نتیجه تاثیراتش را روی خواندن و ترجمه آیات قرآن کریم بررسی کند و ببیند که آیا تفاوت های واژگانی عمده ای میان این مترجمین وجود دارد یا نه. به این منظور، ترجمه 24 آیه از آیات قرآن کریم مورد بررسی مقایسه ای قرار ...
15 صفحه اولMy Resources
Journal title
volume 17 issue 47
pages 155- 169
publication date 2017-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023