A three-dimensional numerical model to estimate the fall velocity of sediment particles
Authors
Abstract:
The fall velocity of sediment particles plays a key role in sediment transport studies. Researchers have attempted to determine the terminal fall velocity, and most of the studies in this regard have been based on experimental, quasi-experimental, and in-situ measurements. The present study aimed to use a numerical model to estimate the fall velocity of a single sediment particle in distilled and motionless water. We used spherical quartz particles with the diameters of 0.77, 1.09, 2.18, and 4.36 millimeters and density of 2,650 kg/m3. The Flow-3D software was applied to estimate the fall velocity based on the environment of experiment by Ferguson and Church (2004) using the void of flow method. The main objective of this research was to demonstrate the power of the numerical model to simulate the fall velocity of sediment particles. To validate the results of the model, they were compared with the experimental results and 26 well-known publications during 1933-2016 using the root-square-mean and mean-absolute-percentage errors. The results showed good agreement between the experimental and numerical data. Therefore, the proposed numerical model could be used to determine the fall velocity of sediment particles with a wide range of diameters in the proposed environment and particle types.
similar resources
the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولUsing a special empirical model to estimate sediment yield of Koohbord dam watershed in Kohgilouyeh County
Extended abstract Koohbord dam watershed with a total area of 38.29 square kilometers in Kohgiluyeh and Boyerahmad province is one of the watersheds without sedimentation data, which requires the use of empirical models to estimate the sediment for estimating sediment, so the results obtained through data is the basis of the management plans of dam watershed. In this research, using base maps ...
full textA three-dimensional optical model to describe the optical function of the keratoconus eye
This article has no abstract.
full textA Three- Dimensional Model of the Caspian Sea
Observations of the Caspian Sea during August-September 1995 are used to develop a three-dimensional numerical model to be used in calculating temperature and current. The model has variable grid resolution and horizontal smoothing that filters out small scale vertical motion. Data from the meteorological buoy network on the Caspian Sea are combined with routine observations at first-order syno...
full textA Three- Dimensional Model of the Caspian Sea
Observations of the Caspian Sea during August-September 1995 are used to develop a three-dimensional numerical model to be used in calculating temperature and current. The model has variable grid resolution and horizontal smoothing that filters out small scale vertical motion. Data from the meteorological buoy network on the Caspian Sea are combined with routine observations at first-order syno...
full textDetermination of the Best Model to Estimate Suspended Sediment Load in Zaremrood River, Mazandaran Province
Extended abstract 1- Introduction The phenomena of erosion, sediment transport, and sedimentations have tremendously destructive effects on the environment and hydraulics structures. In general, the sediment transportation depends on river discharges, but the proposed equations inherited serious errors. The estimation of suspended sediment load (SSL) is one of the most important factors in r...
full textMy Resources
Journal title
volume 7 issue 2
pages 86- 93
publication date 2019-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023