A study on effect of crack on free vibration of thick rectangular plate with initial geometric imperfection using differential quadrature method
Authors
Abstract:
In this study, vibration of initially imperfect cracked thick plate has been investigated using the differential quadrature method. The crack modeled as an open crack using a no-mass linear spring. The governing equations of vibration of a cracked plate are derived using the Mindlin theory and considering the effect of initial imperfection in Von-Karman equations. Differential equations are discretized using the differential quadrature method and are converted to a non-standard eigenvalue problem. Finally, natural frequencies and mode shapes of the cracked plate are obtained solving this eigenvalue problem. The accuracy of the proposed approach is verified using the results presented in other references. Various examples of the cracked plate problem have been solved utilizing the proposed method and effects of selected parameters such as crack depth, length and position have been checked. It is demonstrated that increasing the length and the depth of the crack decrease the plate stiffness and natural frequencies. Moreover, the effects of crack location on natural frequencies are more complicated, since they depend on the mode shapes, and when the crack is placed at a node-line, it will not influence the frequencies.
similar resources
Analysis of Free Vibration Sector Plate Based on Elastic Medium by using New Version of Differential Quadrature Method
The new version of differential quadrature (DQ) method is extended to analyze the free vibration of thin sector orthotropic plates on the Pasternak elastic foundation with various sector angles and elastic parameters. Detailed formulations are given. Comparisons are made with existing analytical and/or numerical data. Numerical results indicate that convergence can be achieved with increasing i...
full textGeneralized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate
This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...
full textthe effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولFree vibration analysis of functionally graded rectangular plates via differential quadrature method
In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory b...
full textTime integration of rectangular membrane free vibration using spline-based differential quadrature
In this paper, numerical spline-based differential quadrature is presented for solving the boundary and initial value problems, and its application is used to solve the fixed rectangular membrane vibration equation. For the time integration of the problem, the Runge–Kutta and spline-based differential quadrature methods have been applied. The Runge–Kutta method was unstable for solving the prob...
full textFree Vibration Analysis of 2D Functionally Graded Annular Plate considering the Effect of Material Composition via 2D Differential Quadrature Method
This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations of motion ...
full textMy Resources
Journal title
volume 50 issue 2
pages 358- 365
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023