A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

Authors

Abstract:

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a long history. However, due to the existence of the location component and the physical connection of users with the outside world in social networking sites, several special features such as spatial, temporal, and social factors are considered to improve recommendations. Among the specific features of location-based social network data, spatial factor plays an important role in improving recommendations. Because people's desire to visit places is greatly influenced by the distance between the person and the place. Also, the distribution of POIs in the region changes the pattern of user visits. In the first part of this study, we discuss challenges which social networking sites may face by comparing location-based recommender systems with traditional recommender systems. In the following, we mention some important contexts and factors in POI recommendation. Spatial factor, social relations, different types of contents, different categories, sequential pattern, and time factor are contexts which are commonly used in POI recommendation. Next, we mention different types of location-based recommender systems: the fused model and the joint model. In the fused model we model user’s preferences and other additional contexts individually and after that, we combine their results with collaborative filtering. In a joint model, all contexts are learned Simultaneously.  In the next part, we discuss methods for extracting spatial context in location-based recommender systems. There are three major ways of modeling spatial data: independent, dependent, and restrictive models.  In independent modeling, we model spatial factor independently without considering the user’s preferences and other contexts. Here we discuss four basic independent models in detail: power law, Gaussian distribution, Kernel Density Estimation, and distance-based models. The power law is a relationship between two quantities in which a relative change in one quantity causes a change in another quantity, and this change is independent of the initial values ​​of the two quantities. This rule is used for modeling spatial data in recommender systems. Changes in many natural quantities around a constant value follow the Gaussian distribution, and this has led to its use to model spatial factors. Kernel density estimation is a non-parametric method for estimating the probability density function of a random variable. To recommend personalized items this method can be very useful because we could model spatial data of every user individually. distance-based methods model spatial factor by considering the distance between users and items or items with each other.  At dependent modeling spatial context is learned with other contexts Simultaneously. For this, we determine four popular methods: matrix factorization, probability-based models, artificial intelligence, and combined models. These methods are general algorithms for recommending items in recommender systems and spatial factor is just one of their components. Restricted models filter recommendations by considering spatial constraints.  At the end of the article, we summarize the various features of the proposed methods and mention their advantages and disadvantages.rapid growth of mobile manufacturing technologies and its combination with various technologies have led to the addition of location dimension to social networks and the formation of location-based social networks. Recommender systems are used on location-based social networks to recommend points of interest to users. Traditional recommender systems such as movies and book recommendations have a long history. However, due to the locational component and physical connection of users with the outside world in location-based social networks, several specific features such as spatial, temporal, and social factors are considered to improve recommendations. Among the specific features of the location-based social network’s data, location factor plays an important role in improving recommendations. Because people's desire to visit places is largely influenced by the distance between the person and the place. The distribution of attractive places in the area also changes the pattern of user visits. In this study, we first discuss the challenges that location-based social networks face by comparing them with traditional recommender systems. Next, the factors that influence location recommendation in location-based recommender systems are discussed in detail. Finally, a variety of location modeling methods, which is one of the most important factors in recommending attractive locations to users using location-based social network data, are discussed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

network of phonological rules in lori dialect of andimeshk: a study within the framework of post-generative approach.

پژوهش حاضر ارائه ی توصیفی است از نظام آوایی گویش لری شهر اندیمشک، واقع در شمال غربی استان خوزستان. چهارچوب نظری این پژوهش، انگاره ی پسازایشی جزءمستقل می باشد. این پایان نامه شامل موارد زیر است: -توصیف آواهای این گویش به صورت آواشناسی سنتی و در قالب مختصه های زایشی ممیز، همراه با آوانوشته ی تفصیلی؛ -توصیف نظام آوایی گویش لری و قواعد واجی آن در چهارچوب انگاره ی پسازایشی جزءمستقل و معرفی برهم کن...

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

faculty of psychology and social sciences group of anthropology master thesis in major of anthropology

چکیده پایان نامه (شامل خلاصه، اهداف، روش های اجرا و نتایج به دست آمده): کار جمع آوری گو یش های محلی در سال های اخیر شتاب امیدوار کننده ای به خود گرفته است. شاید از بارزترین اهداف جمع آوری گویش های مختلف، ثبت و ضبط آن، جلوگیری از نابودی و مهمتر از همه حل مشکلات دستوری زبان رسمی باشد. دقت در فرآیند های زبانی گویش های محلی نوع ارتباط مردم نواحی مختلف با پیرامون نشان را به ما نشان خواهد داد. از س...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 4

pages  235- 255

publication date 2020-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023