A Novel Structure for Optical Channel Drop Filter using Two-Dimensional Photonic Crystals with Square Lattice

Authors

  • aram khoshtinat Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
  • Mohammad Ghiamy Department of Electrical Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
Abstract:

In the present paper a novel structure for optical channel drop filter (CDF) based on photonic crystal ring resonator with circular core has been proposed. In order to design the proposed CDF, the plan wave expansion (PWE) method is applied for calculation of band structure and photonic band gap while the transmission characteristics of proposed CDF have been calculated using the finite difference time domain (FDTD) method. The transmission efficiency of 100%, quality factor of 2583 and bandwidth of 0.6 are achieved at wavelength near to 1550 nm which proved this filter is usable and suitable for optical communication applications.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

full text

design and analysis of a novel hexagonal shaped channel drop filter based on two-dimensional photonic crystals

in this paper a new optical channel drop filter (cdf) based on two dimensional (2-d) photonic crystals (phc) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (fdtd) and plane-wave-expansion (pwe) techniques. photonic crystals (phcs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

full text

Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter

Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...

full text

Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices

In this paper, Using a 2D photonic crystal and a novel square ring resonator,several compact and simple structures have been introduced in the present paper toconstruct optical add/drop filters and multi-channel filter. The difference structures hasbeen designed and simulated by using the proposed square ring resonator and differentdropping waveguides. To do analyses, th...

full text

Novel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators

In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...

full text

novel design of optical channel drop filter based on photonic crystal ring resonators

in this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. the rods of this structure is silicon with the refractive index nsi=3.46 and the surrounding environment is air with the refractive index of nair=1.the widest photonic band gap obtains for the filling ratio of r/a = 0.2. the filter’s transmis...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 21

pages  43- 47

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023