A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning

Authors

  • Hamed Farrokhi-Asl School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
  • Hamed Rafiei School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • Masoud Rabbani School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • Mona Montazeri School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Abstract:

Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate components. The first part of the objective function is related to balance problem. In this part, objective functions are minimizing the cycle time, minimizing the number of workstations, and maximizing the line efficiencies. The second part is related to human issues and consists of hiring cost, firing cost, training cost, and salary. To solve the presented model, two well-known multi-objective evolutionary algorithms, namely non-dominated sorting genetic algorithm and multi-objective particle swarm optimization, have been used. A simple solution representation is provided in this paper to encode the solutions. Finally, the computational results are compared and analyzed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Solving a multi-objective mixed-model assembly line balancing and sequencing problem

This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...

full text

A Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers

This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...

full text

A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect

Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...

full text

‘BALANCING AND SEQUENCING’ VERSUS ‘ONLY BALANCING’ IN MIXED MODEL U-LINE ASSEMBLY SYSTEMS: AN ECONOMIC ANALYSIS

With the growth in customers’ demand diversification, mixed-model U-lines (MMUL) have acquired increasing importance in the area of assembly systems. There are generally two different approaches in the literature for balancing such systems. Some researchers believe that since the types of models can be very diverse, a balancing approach without simultaneously sequencing of models will not yield...

full text

A Multi-Objective Mixed-Model Assembly Line Sequencing Problem With Stochastic Operation Time

In today’s competitive market, those producers who can quickly adapt themselves todiverse demands of customers are successful. Therefore, in order to satisfy these demands of market, Mixed-model assembly line (MMAL) has an increasing growth in industry. A mixed-model assembly line (MMAL) is a type of production line in which varieties of products with common base characteristics are assembled o...

full text

Mixed-Model Assembly Line Balancing with Considering Reliability

This paper presents a multi-objective simulated annealing algorithm for the mixed-model assembly line balancing with stochastic processing times. Since, the stochastic task times may have effects on the bottlenecks of a system, maximizing the weighted line efficiency (equivalent to the minimizing the number of station), minimizing the weighted smoothness index and maximizing the system reliabil...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 4

pages  -

publication date 2016-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023