A MODIFIED STEFFENSEN'S METHOD WITH MEMORY FOR NONLINEAR EQUATIONS
author
Abstract:
In this note, we propose a modification of Steffensen's method with some free parameters. These parameters are then be used for further acceleration via the concept of with memorization. In this way, we derive a fast Steffensen-type method with memory for solving nonlinear equations. Numerical results are also given to support the underlying theory of the article.
similar resources
A computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
full textA SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS
In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...
full textAdaptive Steffensen-like Methods with Memory for Solving Nonlinear Equations with the Highest Possible Efficiency Indices
The primary goal of this work is to introduce two adaptive Steffensen-like methods with memory of the highest efficiency indices. In the existing methods, to improve the convergence order applied to memory concept, the focus has only been on the current and previous iteration. However, it is possible to improve the accelerators. Therefore, we achieve superior convergence orders and obtain as hi...
full textA Three-Point Iterative Method for Solving Nonlinear Equations with High Efficiency Index
In this paper, we proposed a three-point iterative method for finding the simple roots of non- linear equations via mid-point and interpolation approach. The method requires one evaluation of the derivative and three(3) functions evaluation with efficiency index of 81/4 ≈ 1.682. Numerical results reported here, between the proposed method with some other existing methods shows that our method i...
full textA NEW TWO STEP CLASS OF METHODS WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS WITH HIGH EFFICIENCY INDEX
It is attempted to extend a two-step without memory method to it's with memory. Then, a new two-step derivative free class of without memory methods, requiring three function evaluations per step, is suggested by using a convenient weight function for solving nonlinear equations. Eventually, we obtain a new class of methods by employing a self-accelerating parameter calculated in each iterative...
full textA new iterative with memory class for solving nonlinear equations
In this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. This class includes three parameters. Therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. Some numerical examples are also presented.
full textMy Resources
Journal title
volume 5 issue 1 (WINTER)
pages 41- 48
publication date 2015-03-21
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023