A Mathematical Model for Sustainable and Resilient Supply Chain by Considering Synchronization in the Production and Distribution Network

Authors

  • Esmaeil Najafi Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  • Mohammad Haji Molana Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  • Mohsen Khezeli Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Abstract:

Nowadays, supply chain management (SCM) is an interesting problem that has attracted the attention of many researchers. Transportation network design is one of the most important fields of SCM. In this paper, a logistics network design is considered to optimize the total cost and increase the network stability and resiliency. First, a mixed integer nonlinear programming model (MINLP) is formulated to minimize the transportation time and transportation cost of products. The proposed model consists of two main stages. One is a normal stage that minimizes the transportation and holding costs, all manufacturers are also assumed to be healthy and in service. In this stage, the quantity of customer demand met by each manufacturer is eventually determined. The second is the resilience stage. A method is presented by creating an information network in this supply chain for achieving the resilient and sustainable production and distribution chain that, if some manufacturers break down or stop production, Using the Restarting and load sharing scenarios in the reactive approach to increase resilience with accepting the costs associated with it in the supply network and return to the original state in the shortest possible time, the consequences of accidental failure and shutdown of production units are managed. Two capacities are also provided for each manufacturer Normal capacity to meet the producer's own demand Load sharing capacity, Determine the empty capacity and increase the capacity of alternative units to meet the out-of-service units demand In order to solve the model, we used GAMS & Matlab software to find the optimal solutions. A hybrid priority-based Non-dominated Sorting Genetic Algorithms (NSGA-II) and Sub-population Genetic Algorithm (SPGA- II) is provided in two phases to find the optimal solutions. The solutions are represented with a priority matrix and an Allocated vector. To compare the efficiency of two algorithms several criteria are used such as NPS, CS and HV. Several Sample problems are generated and solved that show the Sub-population Genetic Algorithm (SPGA- II) can find good solutions in a reasonable time limit.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Novel Sustainable Closed-loop Supply Chain Network Design by Considering Routing and Quality of Products

One of the strategic decisions that can be made in supply chain is designing its network which has high impact on costs, and satisfaction level of customers. This paper focuses on designing a distribution network including determining the number and location of facilities, how to allocate the customers in network, and also determining the extent of carrying different products from different ori...

full text

A multi-period fuzzy mathematical programming model for crude oil supply chain network design considering budget and equipment limitations

The major oil industry upstream activities include the exploration, drilling, extraction, pipelines installation, and production of crude oil. In this paper, we develop a mathematical model to plan for theseoperations as a crude oil supply chain network design problem.The proposed multi-period mixed integer linear programming model entails both strategic (e.g., facility location and allocation)...

full text

Considering Pricing Problem in a Dynamic and Integrated Design of Sustainable Closed-loop Supply Chain Network

Flexible and dynamic supply chain network design problem has been studied by many researchers during past years. Since integration of short-term and long-term decisions in strategic planning leads to more reliable plans, in this paper a multi-objective model for a sustainable closed-loop supply chain network design problem is proposed. The planning horizon of this model contains multiple strate...

full text

A Network Design Model for a Resilient Closed-Loop Supply Chain with Lateral Transshipment

This paper develops a model for the closed-loop supply chain network design with disruption risk. By considering supply disruption, two factors including extra inventory and lateral transshipment are used as resilience strategies. The main purpose is to reduce the supply chain costs due to the location decisions, quantity of products between different levels and lost sale. Disruption in a suppl...

full text

A New Combination of Robust-possibilistic Mathematical Programming for Resilient Supply Chain Network under Disruptions and Uncertainty: A Real Supply Chain (RESEARCH NOTE)

Nowadays, the design of a strategic supply chain network under disruption is one of the most important priorities of the governments. One of the strategic purposes of managers is to supply the sustainable agricultural products and food in stable conditions which require the production of soil nutrients. In this regard, some disruptions such as sanctions and natural disasters have a destructive ...

full text

A multi-objective evolutionary approach for integrated production-distribution planning problem in a supply chain network

Integrated production-distribution planning (PDP) is one of the most important approaches in supply chain networks. We consider a supply chain network (SCN) to consist of multi suppliers, plants, distribution centers (DCs), and retailers. A bi-objective mixed integer linear programming model for integrating production-distribution designed here aim to simultaneously minimize total net costs in ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33  issue 2

pages  1- 34

publication date 2022-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023