A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect

Authors

  • Hamed Tayebi Department of Industrial Engineering, Islamic Azad University Karaj Branch, Alborz, Iran
  • Majid Khalili Department of Industrial Engineering, Islamic Azad University Karaj Branch,Alborz,Iran
  • Moein Asadi-Zonouz Department of Industrial ans Systems Engineering, Tarbiat Modares University, Tehran, Iran
Abstract:

Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA outperforms GA and ACOGA.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An algorithm for integrated worker assignment, mixed-model two-sided assembly line balancing and bottleneck analysis

This paper addresses a multi-objective mixed-model two-sided assembly line balancing and worker assignment with bottleneck analysis when the task times are dependent on the worker’s skill. This problem is known as NP-hard class, thus, a hybrid cyclic-hierarchical algorithm is presented for solving it. The algorithm is based on Particle Swarm Optimization (PSO) and Theory of Constraints (TOC) an...

full text

A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning

Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate com...

full text

Mixed-Model Assembly Line Balancing with Considering Reliability

This paper presents a multi-objective simulated annealing algorithm for the mixed-model assembly line balancing with stochastic processing times. Since, the stochastic task times may have effects on the bottlenecks of a system, maximizing the weighted line efficiency (equivalent to the minimizing the number of station), minimizing the weighted smoothness index and maximizing the system reliabil...

full text

Solving a multi-objective mixed-model assembly line balancing and sequencing problem

This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...

full text

A Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers

This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...

full text

‘BALANCING AND SEQUENCING’ VERSUS ‘ONLY BALANCING’ IN MIXED MODEL U-LINE ASSEMBLY SYSTEMS: AN ECONOMIC ANALYSIS

With the growth in customers’ demand diversification, mixed-model U-lines (MMUL) have acquired increasing importance in the area of assembly systems. There are generally two different approaches in the literature for balancing such systems. Some researchers believe that since the types of models can be very diverse, a balancing approach without simultaneously sequencing of models will not yield...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 2

pages  123- 140

publication date 2020-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023