A characterization relating domination, semitotal domination and total Roman domination in trees

Authors

Abstract:

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_{vin V(G)}f(v)$ among all total Roman dominating functions $f$ on $G$.It is known that $gamma_{tR}(G)geq gamma_{t2}(G)+gamma(G)$ for any graph $G$ with neither isolated vertex nor components isomorphic to $K_2$, where $gamma_{t2}(G)$ and $gamma(G)$ represent the semitotal domination number and the classical domination number, respectively. In this paper we give a constructive characterization of the trees that satisfy the equality above.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

full text

Co-Roman domination in trees

Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function‎. ‎A vertex v is protected with respect to f‎, ‎if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight‎. ‎The function f is a co-Roman dominating function‎, ‎abbreviated CRDF if‎: ‎(i) every vertex in V is protected‎, ‎and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...

full text

Roman domination excellent graphs: trees

A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...

full text

On Hop Roman Domination in Trees

‎Let $G=(V,E)$ be a graph‎. ‎A subset $Ssubset V$ is a hop dominating set‎‎if every vertex outside $S$ is at distance two from a vertex of‎‎$S$‎. ‎A hop dominating set $S$ which induces a connected subgraph‎ ‎is called a connected hop dominating set of $G$‎. ‎The‎‎connected hop domination number of $G$‎, ‎$ gamma_{ch}(G)$,‎‎‎ ‎is the minimum cardinality of a connected hop‎‎dominating set of $G$...

full text

On trees with equal Roman domination and outer-independent Roman domination numbers

A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...

full text

Outer independent Roman domination number of trees

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  197- 209

publication date 2021-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023