کاربرد شبکه بیزین و مدل ماشین بردار پشتیبان در پیش‌بینی تغییرات سطح تراز ایستابی (مطالعه موردی: دشت اردبیل)

Authors

Abstract:

آب­های زیرزمینی به‌عنوان یکی از منابع مهم و عمده تأمین آب شرب و کشاورزی، به‌ویژه در مناطق خشک و نیمه‌خشک مطرح بوده است. شبیه‌سازی سیستم آب­های زیرزمینی به دلیل پیچیدگی این سیستم­ها به‌آسانی میسر نیست. در این مقاله با استفاده از داده­های سطح تراز ایستابی دشت اردبیل در بازه زمانی(1390-1351)، به ارزیابی عملکرد آزمون گاما برای پردازش و انتخاب ورودی­های مناسب و کارایی مدل­­های حداقل مربعات ماشین بردار پشتیبان و شبکه بیزین پرداخته شد. پارامترهای سطح تراز ایستابی ماهانه با تأخیرهای مختلف به‌عنوان ورودی آزمون گاما در نظر گرفته شد. نتایج آزمون گاما نشان داد که سطح تراز ایستابی با شش تأخیر زمانی، نتایج بهتری به‌منظور پیش‌بینی ارائه می‌دهد. شبیه‌سازی سطح تراز ایستابی با استفاده از دو مدل حداقل مربعات ماشین بردار پشتیبان و شبکه بیزین نیز نشان داد که بهترین ساختار ورودی برای پیش‌بینی سطح تراز ایستابی ماه بعد، تا شش تأخیر زمانی خواهد بود. از میان دو مدل با ساختار ورودی یکسان، مدل حداقل مربعات ماشین بردار پشتیبان، عملکرد بهتری را با توجه به ضریب تبیین 977/0، میانگین خطای مطلق 204/0 و جذر میانگین مربعات خطای 307/0، نسبت به شبکه بیزین داشته است. نتایج تحقیق نشان داد که آزمون گاما در انتخاب ترکیب ورودی مناسب در محاسبات نرم می­تواند کارایی بهتری داشته باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربرد شبکه بیزین و مدل ماشین بردار پشتیبان در پیش بینی تغییرات سطح تراز ایستابی (مطالعه موردی: دشت اردبیل)

آب­های زیرزمینی به عنوان یکی از منابع مهم و عمده تأمین آب شرب و کشاورزی، به ویژه در مناطق خشک و نیمه خشک مطرح بوده است. شبیه سازی سیستم آب­های زیرزمینی به دلیل پیچیدگی این سیستم­ها به آسانی میسر نیست. در این مقاله با استفاده از داده­های سطح تراز ایستابی دشت اردبیل در بازه زمانی(1390-1351)، به ارزیابی عملکرد آزمون گاما برای پردازش و انتخاب ورودی­های مناسب و کارایی مدل­­های حداقل مربعات ماشین برد...

full text

استفاده از مدل های ترکیبی ماشین بردار پشتیبان - موجکی و شبکه عصبی -موجکی در پیش‌بینی تراز آب زیرزمینی دشت اردبیل

چکیده آب‌های زیرزمینی همواره به عنوان یکی از منابع مهم و عمده­ ی تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه­ خشک مطرح بوده‌اند. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه­ ی آنها، لازم است پیش‌بینی دقیقی از نوسانات سطح آب زیرزمینی صورت گیرد. در این تحقیق اطلاعات 15 پیزومتر موجود در دشت اردبیل مورد استفاده قرارگرفت. از تبدیل موجک و روش خوشه‌بندی به ترتیب برای پیش‌پردازش زمانی و مک...

full text

کاربرد روش‌های شبکه‌ی بیزین و حداقل مربعات ماشین بردار پشتیبان در پیش بینی تراز سطح آب دریاچه ارومیه

سابقه و هدف: دریاچه ارومیه به عنوان یک اکوسیستم آبی مهم در شمال غرب ایران واقع شده است. در 14 سال اخیر میانگین تراز سطح آب دریاچه ارومیه به 2/1272 متر تقلیل پیدا کرده و این به این معنی است که اختلاف تراز سطح اکولوژیک دریاچه و تراز سطح کنونی 2 متر است. خشک شدن دریاچه ارومیه باعث بروز مسائل و بحران‌های جدی برای حوضه، استان‌های مجاور و کشور خواهد شد. در این تحقیق از پارامترهای موثر مستقیم و غیر مس...

full text

کاربرد روش ماشین بردار پشتیبان و شبکه بیزین در پیش‌بینی خشکسالی کشاورزی

آگاهی از وضعیت خشکسالی و پیش‌­بینی شرایط آتی آن نقش مهمی در برنامه‌­های مدیریت منابع آب بر­عهده دارد و در این راستا متغیرهای بارش و دما تأثیر به‌­سزایی در شدت و مدت وقوع این پدیده ایفا می‌­کنند. با توجه به وضعیت حاکم بر دریاچه ارومیه در سال­‌های اخیر و تنش آبی موجود در حوزه آبخیز آن، در این پژوهش، وضعیت خشکسالی در ایستگاه سینوپتیک سقز به‌­عنوان یکی از ایستگاه­‌های مهم جنوبی حوزه آبخیز این دریاچ...

full text

کارایی الگوریتم هیبریدی ازدحام ذرات در شبیه سازی سطح تراز ایستابی (مطالعه موردی: آبخوان دشت اردبیل)

آب زیرزمینی و مدیریت منابع آب نقش کلیدی در پایداری منابع آب در نواحی خشک و نیمه خشک ایفا می­کند. پیش­بینی تراز آب زیرزمینی به منظور مدیریت و برنامه­ریزی منابع آب، بسیار مهم است. در این تحقیق از مدل‌های شبکه عصبی مصنوعی و مدل شبکه عصبی مصنوعی مبتنی بر الگوریتم ازدحام ذرات برای تخمین تراز آب زیرزمینی دشت اردبیل استفاده شده است. داده­های مورد استفاده شامل تراز سطح ایستابی طی یک دوره آماری 1351 تا ...

full text

مقایسه الگوریتم تنبل و مدل 5‌M در برآورد تراز سطح ایستابی (مطالعه موردی دشت نیشابور)

In recent years and in many countries, overusing groundwater resources had been higher than their annual feeding amount. This issue caused drop in the groundwater levels, followed by drying wells, qanats and springs. In this study, given the importance of Neyshabur plain in supplying agricultural, industrial and drinkable water of the area, lazy algorithms of KNN, KSTAR and LWL and M5 tree mode...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 36

pages  33- 42

publication date 2017-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023