کاربرد روشهای رگرسیونی و شبکههای عصبی به منظور تخمین هدایت هیدرولیکی اشباع خاک منطقه زاگرس مرکزی
Authors
Abstract:
With the advent of advanced geographical informational systems (GIS) and remote sensing technologies in recent years, topographic (elevation, slope, and aspect) and vegetation attributes are routinely available from digital elevation models (DEMs) and normalized difference vegetation index (NDVI) at different spatial (watershed, regional) scales. This study explores the use of topographic and vegetation attributes in addition to soil attributes to develop pedotransfer functions (PTFs) for estimating soil saturated hydraulic conductivity in the rangeland of central Zagros. We investigated the use of artificial neural networks (ANNs) in estimating soil saturated hydraulic conductivity from measured particle size distribution, bulk density, topographic attributes, normalized difference vegetation index (NDVI), soil organic carbon (SOC), and CaCo3 in topsoil and subsoil horizon. Three neural networks structures were used and compared with conventional multiple linear regression analysis. The performances of the models were evaluated using spearman’s correlation coefficient (r) based on the observed and the estimated values and normalized mean square error (NMSE). Topographic and vegetation attributes were found to be the most sensitive variables to estimate soil saturated hydraulic conductivity in the rangeland of central Zagros. Improvements were achieved with neural network (r=0.87) models compared with the conventional multiple linear regression (MLR) model (r=0.69).
similar resources
کاربرد روشهای رگرسیونی و شبکههای عصبی به منظور تخمین هدایت هیدرولیکی اشباع خاک منطقه زاگرس مرکزی
در سال های اخیر با ظهور سامانه اطلاعات جغرافیایی و تکنولوژی سنجش از دور، ویژگیهای توپوگرافیکی (ارتفاع، شیب و جهت شیب) و ویژگیهای پوشش گیاهی به راحتی به وسیله مدلهای رقومی ارتفاع و شاخص پوشش گیاهی (ndvi) در مقیاسهای مختلف (حوزهای و منطقهای) قابل دسترس میباشد. هدف از انجام این پژوهش، بررسی امکان استفاده از ویژگیهای توپوگرافیکی و پوشش گیاهی به همراه ویژگیهای خاک به عنوان ویژگیهای زود یاف...
full textتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
full textارزیابی مدلهای رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران
هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی میباشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازهگیری آزمایشگاهی و صحرایی آن دشوار، وقتگیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روشهای غیرمستقیم مانند توابع انتقالی میتوان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...
full textبررسی یک معادله جدید تخمین هدایت هیدرولیکی غیر اشباع خاک
یکی از خواص بسیار مهم حاکم بر انتقال آب ومحلولها در خاک هدایت هیدرولیکی (ضریب آبگذری) غیر اشباع خاک است که تعیین آن در صحرا و در آزمایشگاه علاوه بر وقت گیر بودن بسیار گران تمام می شود. مضافا آنکه به لحاظ تغییرات مکانی وزمانی‘ مفید بودن نتایج محدودو اغلب پراکنده در مسائل عملی قابل تردید است. از اینرو روشهای بسیاری برای تخمین هدایت هیدرولیکی غیر اشباع خاک با استفاده از پاره ای ازخواص خاک که انداز...
full textکاربرد شبکه عصبی مصنوعی در پیشبینی هدایت هیدرولیکی اشباع با استفاده از پارامترهای فیزیکی خاک
ویژگیهای هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا مینمایند. از آنجائیکه اندازهگیری مستقیم این قبیل ویژگیهای هیدرولیکی خاک امری وقتگیر و هزینهبر است روشهای غیرمستقیمی چون توابع انتقالی و شبکههای عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافتهاند. در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به منظور تخمین هدایت هیدرولیک...
full textمقایسه روشهای شبکه عصبی مصنوعی و رگرسیونی برای پیشبینی هدایت هیدرولیکی اشباع خاکهای استان خوزستان
Direct measurement of soil hydraulic characteristics is costly and time-consuming. Also, the method is partly unreliable due to soil heterogeneity and laboratory errors. Instead, soil hydraulic characteristics can be predicted using readily available data such as soil texture and bulk density using pedotransfer functions (PTFs). Artificial neural networks (ANNs) and statistical regression are t...
full textMy Resources
Journal title
volume 19 issue 71
pages 217- 228
publication date 2015-06
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023