کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی

Authors

  • رضا کیانی ماوی استادیار، دانشگاه آزاد اسلامی، واحد قزوین، گروه مدیریت، قزوین، ایران (عهده دار مکاتبات)
  • کامران صیادی نیک کارشناس ارشد، دانشگاه آزاد اسلامی، واحد قزوین، گروه مدیریت بازرگانی، قزوین، ایران
Abstract:

پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبرای پیشبینی یک روز بعد قیمت سهام با الگوریتم یادگیری لونبرگ- MLP متغیر بنیادی و فنی مورد بررسی قرارگرفت. سپس از شبکهی عصبی0/ استاندارد آموزش داده شد که نرخ یادگیری 3 BP 6 با الگوریتم -5- یعنی 1 MLP مارکوارت استفاده شد. پس از آن ساختار بهینه شبکه عصبیاستاندارد به مینیممهای محلی محاسبه گردید و در آخر برای رهایی از BP بهترین عملکرد را داشته است و برای این نرخ یادگیری حساسیت الگوریتماستاندارد همراه با مومنتم استفاده شده است. نتایج بدست آمده نشان داد که پیشبینی بوسیله BP این حساسیت به مینیممهای محلی از الگوریتماستاندارد می باشد. BP استاندارد همراه با مومنتم بهتر از BP الگوریتم

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی

In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...

full text

پیشبینی تغییرات قیمت سهام با استفاده از شبکه عصبی مصنوعی و گشتاورهای متغیر تصادفی

در این پایان نامه به بررسی پیشبینی قیمت سهام توسط شبکه عصبی پرداخته شد، هدف اصلی پاسخ به این پرسش بود که آیا می توان با استفاده از شبکه های عصبی و با استفاده از خواص آماری داده ها برای داده های ورودی به شبکه، برای تصمیم گیری در کشف قواعد نهفته در حرکات قیمت استفاده نمود، بطوریکه درصد صحت پیشبینی ها بیشتر از 50 % (روش تصادفی ) باشد برای این منظور از شبکه عصبی پیشخور با روش پس انتشار خطا استفاده ...

مدل‌سازی پیش‌بینی قیمت سهام با استفاده از شبکه عصبی و مقایسه آن با روشهای پیش‌بینی ریاضی

استفاده از روشهایی برای پیش بینی وضعیت آینده، همواره دغدغه اصلی اندیشمندان علوم مختلف بوده است. در این راه بطور طبیعی، روشهایی، قابلیت ماندگاری و کاربردی مناسب دارند که دارای کمترین خطای ممکن در پیش‌بینی باشند. بر این مبنا در سالهای بسیار، روشهایی ریاضی؛ اعم از  میانگین ساده، میانگین موزون، میانگین دوبل، رگرسیون و مانند اینها، تنها الگوهایی بود که قاطعانه مورد تأیید و استفاده قرار می‌گرفت؛ اما ...

full text

پیش‌بینی اثر متغیرهای کلان بر شاخص قیمت سهام با استفاده از شبکه عصبی GMDH

اقتصاد هر کشور از بخش¬های مختلفی تشکیل شده که روابط بین این بخش¬ها، سمت و سوی اقتصاد آن کشور را مشخص می¬کند. در این میان بازار سرمایه در کنار بازار پول، به عنوان اجزای تشکیل¬دهنده بازارهای مالی بوده و در واقع، شریان¬های اصلی یک اقتصاد محسوب می¬شوند، که مسائلی نظیر رشد و توسعه اقتصادی منوط به عملکرد آنها در اقتصاد است و چنانچه رابطه منطقی بین بازار مالی با بخش های دیگر اقتصادی وجود نداشته باشد، ...

full text

پیش‌بینی شاخص قیمت بورس سهام با استفاده از شبکه عصبی و تبدیل موجک

  شاخص بازار سرمایه به عنوان دماسنج اقتصادی هر کشور می‌باشد. از این رو پیش‌بینی این متغییر جهت اخذ دید کلی از وضعیت اقتصادی و اخذ استراتژی‌های سرمایه‌گذاری، یکی از مسائل مهم به شمار می‌رود. از جمله روش‌های پیش‌بینی پرکاربرد در سری‌های زمانی مالی، شبکه عصبی می‌باشد که با توجه به جامعیت این روش و عدم وجود برخی از پیش‌فرض‌ها در خصوص داده‌ها، گسترش زیادی نسبت به روش‌های آماری یافته است. اما وجود نو...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1393  issue ویژه نامه

pages  75- 81

publication date 2015-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023