کارایی مدل ترکیبی نسبت فراوانی-ماشین بردار پشتیبان در شناسایی مناطق مستعد سیل آبخیز کلات

Authors

  • بیسواجیت پرادهان استاد‌، مرکز مدل‌سازی پیشرفته و سیستم‌های اطلاعات جغرافیایی، دانشکدۀ مهندسی و فناوری اطلاعات، دانشگاه تکنولوژی سیدنی، NSW، استرالیا
  • حمزه مجددی ریزه ئی دانشجوی دکتری، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
  • کاکا شاهدی دانشیار، دانشکدۀ منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
Abstract:

جاری شدن سیل آثاری منفی بر محیط زیست، اقتصاد، جوامع انسانی و صنعت دارد. امروزه، کاربرد مدل‌های پیشرفتۀ سیلاب برای شناسایی مناطق حساس و بهبود سیستم مدیریت سیل رشد چشمگیری داشته است. در این میان، تعدادی از محققان با ترکیب برخی مدل‌‌ها به نتایج قابل قبولی برای شناسایی مناطق مستعد سیل دست یافتند. از آنجا که آبخیز کلات از منظر سیلاب به‌خصوص سیلاب‌های اخیر سال 1398 جزء مناطق پرخطر استان خراسان رضوی محسوب می‌شود و تا کنون نیز در آن از تکنیک‌های پیشرفته برای برآورد احتمال وقوع سیل استفاده نشده است، بنابراین مدل ترکیبی نسبت فراوانی- ماشین بردار پشتیبان FR-SVM برای مدل‌سازی سیلاب انتخاب شده و با مدل مستقل SVM مقایسه شد. پس از بررسی‌های صورت‌گرفته 73 نقطۀ سیل‌گیر ثبت شده و 15 عامل مؤثر بر وقوع سیل شامل بارش سالانه، زمین‌شناسی، کاربری اراضی/پوشش زمین، طول شیب، فاصله از رودخانه، تحلیل سایۀ پستی و بلندی‌ها، ارتفاع، شاخص همگرایی، تحدب و تعقر طولی و عرضی، شیب، شاخص قدرت جریان، شاخص زبری توپوگرافی، شاخص رطوبت توپوگرافی و عمق دره، در نظر گرفته شد. ارزیابی مدل‌‌ها توسط معیارهای مختلف سنجش دقت از جمله ضریب کاپا، ریشۀ میانگین مربعات خطا، منحنی مشخصۀ عملکرد سیستم و منحنی میزان پیش‌بینی، صورت گرفت. مدل FR-SVM با منحنی میزان پیش‌بینی 8862/0، دقت زیاد و کارایی بهتری را نسبت به SVM نشان داد. این نتایج می‌تواند برای مدیریت مناطق آسیب‌پذیر سیل و سایر کاربردهای منابع طبیعی استفاده شود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

برآورد ارزش در معرض ریسک با استفاده از مدل ترکیبی ماشین بردار پشتیبان و گارچ

یکی از حوزه‎های اصلی مدیریت مالی، مدیریت ریسک می‏باشد. منظور از مدیریت ریسک، شناسایی، اندازه‎گیری و نظارت بر ریسک است. بنابراین اندازه‎گیری ریسک از جایگاه ویژه‎ای در مدیریت ریسک برخوردار است. از جمله روش‌های شناخته شده و پرکاربرد اندازه‎گیری ریسک، محاسبه ارزش در معرض ریسک می‎باشد که موضوع اصلی این پژوهش است. در این پژوهش با استفاده از مدل ترکیبی ماشین بردار پشتیبان و‎گارچ به پیش‎بینی نوسانات شا...

full text

ماشین بینایی تشخیص‌گر باروری تخم‌مرغ و ارزیابی کارایی شبکه‌های عصبی و ماشین بردار پشتیبان در آن

In this research, a system is proposed for detecting fertility of eggs. The system is composed of two parts: hardware and software. The fabricated hardware provides a platform to obtain accurate images from inner side of the eggs, without harming their embryos. The software part includes a set of image processing and machine vision processes, which is able to detect the fertility of eggs from c...

full text

ارزیابی وپتانسیل سنجی خطروقوع سیل درشهرجناح با استفاده از الگوریتم ماشین پشتیبان بردار (SVM)

یکی از انواع فرآیند های دامنه ای که هر ساله موجب خسارت جانی و مالی فراوان در بسیاری از نقاط ایران و جهان می شود وقوع سیل است. شناسایی مناطق مستعد وقوع سیل از طریق پهنه بندی خطر، یکی از اقدامات موثر و ضروری در کاهش خطرات احتمالی و مدیریت آن می باشد. هدف اصلی این پژوهش، ارزیابی وقوع سیل در شهر جناح با استفاده از مدل ماشین بردار پشتیبان می باشد. در ابتدا نقشه DEM محدوده مورد مطالع...

full text

برآورد ارزش در معرض ریسک با استفاده از مدل ترکیبی ماشین بردار پشتیبان و گارچ

یکی از حوزه‎های اصلی مدیریت مالی، مدیریت ریسک می‏باشد. منظور از مدیریت ریسک، شناسایی، اندازه‎گیری و نظارت بر ریسک است. بنابراین اندازه‎گیری ریسک از جایگاه ویژه‎ای در مدیریت ریسک برخوردار است. از جمله روش های شناخته شده و پرکاربرد اندازه‎گیری ریسک، محاسبه ارزش در معرض ریسک می‎باشد که موضوع اصلی این پژوهش است. در این پژوهش با استفاده از مدل ترکیبی ماشین بردار پشتیبان و‎گارچ به پیش‎بینی نوسانات ش...

full text

ارزیابی مدل ترکیبی موجک – حداقل مربعات ماشین بردار پشتیبان در ریزمقیاس کردن مکانی - زمانی سری های زمانی بارش

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک – حداقل مربعات ماشین بردا...

full text

استفاده از مدل های ترکیبی ماشین بردار پشتیبان - موجکی و شبکه عصبی -موجکی در پیش‌بینی تراز آب زیرزمینی دشت اردبیل

چکیده آب‌های زیرزمینی همواره به عنوان یکی از منابع مهم و عمده­ ی تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه­ خشک مطرح بوده‌اند. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه­ ی آنها، لازم است پیش‌بینی دقیقی از نوسانات سطح آب زیرزمینی صورت گیرد. در این تحقیق اطلاعات 15 پیزومتر موجود در دشت اردبیل مورد استفاده قرارگرفت. از تبدیل موجک و روش خوشه‌بندی به ترتیب برای پیش‌پردازش زمانی و مک...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  77- 95

publication date 2020-03-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023