پیش بینی یک روزه قیمت سهام با استفاده از مدل ترکیبی
Authors
Abstract:
پیشبینی بازارهای مالی یکی از سرفصلهای مهم در حوزه مالی و مطالعات پژوهشی است. اهمیت پیشبینی از یک سو و پیچیدگی آن از سوی دیگر باعث شده است که تحقیقات زیادی در این زمینه انجام شود. در این پژوهش از یک روش ترکیبی شامل تبدیل موجک، مدل ARMA-EGARCH و شبکه عصبی مصنوعی برای پیشبینی یک دورهای قیمت سهام در بازارهای ایران و آمریکا استفاده شده است. ابتدا به کمک تبدیل موجک سری زمانی را به چند سری جزئی و یک سری تقریبی تجزیه شده و سپس مدل ARMA-EGARCH برای پیشبینی سریهای جزئی و شبکه عصبی مصنوعی برای پیشبینی سری تقریبی بکار گرفته میشوند. در این مدل علاوه بر سری تقریبی، برخی از شاخصهای تکنیکال نیز برای بهبود شبکه عصبی به آن داده میشوند. ارزیابی مدل پیشنهادی برای پیشبینی قیمت در بازار ایران و آمریکا با مدلهای شبکه عصبی مصنوعی، ARIMA-EGARCH و ARIMA-ANN نشان داد که مدل پیشنهادی عملکرد بهتری نسبت به سایر مدلها برای پیشبینی قیمت سهام در بازار ایران و آمریکا دارد.
similar resources
پیش بینی شاخص قیمت سهام با استفاده از مدل هیبریدی
پیشبینی شاخص قیمت بازار سهام به علت تاثیرپذیری آن از بسیاری عوامل اقتصادی و غیراقتصادی همواره امری مهم و چالش برانگیز بوده، به طوری که انتخاب بهترین و کارآمدترین مدل به منظور پیشبینی آن امری دشوار میباشد. از طرفی سریهای زمانی دنیای واقعی، برای مثال سری زمانی شاخص قیمت سهام، به ندرت دارای ساختاری کاملاً خطی و یا غیرخطی است. مدلهای هموارسازی نمایی، میانگین متحرک خودرگرسیون انباشته (آریما) و ش...
full textمدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
full textمدل سازی پیش بینی قیمت سهام با استفاده از شبکه عصبی و مقایسه آن با روشهای پیش بینی ریاضی
استفاده از روشهایی برای پیش بینی وضعیت آینده، همواره دغدغه اصلی اندیشمندان علوم مختلف بوده است. در این راه بطور طبیعی، روشهایی، قابلیت ماندگاری و کاربردی مناسب دارند که دارای کمترین خطای ممکن در پیش بینی باشند. بر این مبنا در سالهای بسیار، روشهایی ریاضی؛ اعم از میانگین ساده، میانگین موزون، میانگین دوبل، رگرسیون و مانند اینها، تنها الگوهایی بود که قاطعانه مورد تأیید و استفاده قرار می گرفت؛ اما ...
full textپیش بینی روند قیمت در بازار سهام با استفاده از الگوریتم جنگل تصادفی
فعالان بورس درصدد دستیابی و به کارگیری روشهایی هستند تا بتوانند با پیشبینی آتی قیمت سهام، سود سرمایه خود را افزایش دهند .بنابراین، ضروری به نظر میرسد که روشهای مناسب، صحیح و متکی به اصول علمی در تعیین قیمت آینده سهام فرآروی افراد سرمایهگذار قرار گیرد. تاکنون روشهای مختلفی جهت نیل به این هدف معرفی شدهاند که اغلب روشهای آماری و هوش مصنوعی هستند. در پژوهش حاضر با استفاده از رویکرد جنگل تصا...
full textپیش بینی قیمت سهام بااستفاده از الگوریتم کرم شبتاب (FA)
در این پژوهش به پیشبینی قیمت سهام 10 شرکت از شرکتهای پذیرفته شده در بورس و تعدادی از شرکتهای حاضر در فرابورس بااستفاده از الگوریتم کرم شبتاب پرداخته شده است. این پژوهش ازنظر هدف، کاربردی، از نظر روش گردآوری اطلاعات شبه تجربی، توصیفی - پیمایشی و پس رویدادی است. همچنین ازنظر ابزارهای گردآوری اطلاعات، کتابخانه ای می باشد و بدلیل ماهیت مدلسازی و پیشبینی، ازنوع پژوهش استقرایی است. در این تحقی...
full textپیش بینی قیمت سهام با روش رگرسیون فازی
در پیش بینی قیمت سهام، روش های گوناگونی به کار رفته است، اما هیچ کدام از آن ها نمی تواند، به تمام متغیّرهای شرکت کننده در برآورد مدل قیمت سهام و اثر هر یک از آن ها و حل خطای مدل بپردازد. اکثر حوزه های پیش بینی در روش های کلاسیکی، چون ARIMA و روش های نوینی، چون شبکه های عصبی برای قیمت سهام قرار دارند. در این پژوهش به روشی دست یافته شده که حاصل ادغام رگرسیون معمولی و رگرسیون فازی به همراه بهینه س...
full textMy Resources
Journal title
volume 8 issue 30
pages 313- 328
publication date 2019-06-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023