پیش بینی مالیات بر ارزش افزوده ناشی از مصرف دخانیات در ایران با استفاده از روش شبکه عصبی

Authors

Abstract:

در این مقاله، پیش‌بینی درآمد حاصل از این منبع مالیاتی با استفاده از رویکرد مبتنی بر برآورد پایه مالیاتی مدنظر قرار گرفته است. بدین نحو که در مرحلۀ اول، پایۀ مالیات (مخارج مصرفی سیگار) برای دوره 1391 الی 1394 پیش بینی و سپس مالیات این سال‌ها با اعمال نرخ‌های مالیاتی، محاسبه خواهد شد. در این راستا از آنجا که یکی از دغدغه‌های سیاستگذاران دسترسی به پیش‌بینی‌های دقیق از درآمدهای مالیاتی است، از روش شبکه‌های عصبی با ناظر برای پیش‌بینی و برای آموزش شبکه‌ها از الگوریتم پس انتشار استفاده شده است. نتایج بیانگر آن است که درآمد مالیات بر ارزش افزوده ناشی از مصرف سیگار در سال‌های مورد پیش‌بینی، به‌طور متوسط از رشد سالانه 20 درصد برخوردار خواهد شد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل ترکیبی شبکه عصبی با الگوی arima جهت پیش بینی مالیات بر ارزش افزوده بر مصرف بنزین در ایران

یکی از مسائل مهم هنگام بودجه ریزی، دسترسی به درآمدهای قابل تحقق است که این موضوع مستلزم پیش بینی های دقیق از انواع درآمدها در آینده می باشد. یکی از منابع درآمدی پر اهمیت دولت مالیات بوده که در این مقاله، پیش بینی مالیات بر ارزش افزوده ناشی از مصرف بنزین مدنظر قرار گرفته است. هدف اصلی، دستیابی به روشی کارا جهت پیش بینی مصرف بنزین و مالیات بر ارزش افزوده ناشی از آن در ایران می باشد. در این مقاله،...

full text

پیش بینی مالیات بر ارزش افزوده بر مصرف بنزین

در قانون مالیات بر ارزش افزوده برای کنترل مصرف بنزین، به عنوان یکی از کالاهای آلاینده محیط زیست، و همچنین دستیابی به منابع درآمدی جهت حفاظت از محیط زیست، نرخ مالیاتی بالاتر از نرخ استاندارد بر مصرف آن وضع می شود. از این رو، در این مقاله پیش بینی میزان درآمد قابل وصول از این پایه مالیاتی با استفاده از رویکردی دو مرحله ای مدنظر قرار گرفته است. در مرحله اول، پایه مالیات (مخارج مصرفی بنزین) برای دو...

full text

پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...

full text

پیش بینی مصرف کاغذ چاپ و تحریر در ایران با استفاده از روش های کلاسیک و شبکه عصبی مصنوعی

هدف از این تحقیق پیش بینی روند مصرف کاغذ چاپ و تحریر در ایران طی یک دوره زمانی 5 ساله با استفاده از روشهای کلاسیک و نوین پیش بینی است. به منظور انجام این پیش بینی، در ابتدا پیش بینی پذیر بودن سری زمانی با استفاده از آزمون های دوربین- واتسون و گردش مورد بررسی قرار گرفت. سپس به مقایسه مدل شبکه عصبی مصنوعی (پرسپترون چندلایه (MLP)) و مدل های کلاسیک تک متغیره و چندمتغیره از قبیل مدل های تک متغیره هم...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 20

pages  55- 72

publication date 2015-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023