پیش بینی قیمت نفت خام وتعیین سطح تولید بهینه با استفاده از الگوی تکاملی شبکه های عصبی و تعادل نش
Authors
Abstract:
در اقتصاد جهان، نفت خام در کنار گاز طبیعی و زغال سنگ یکی از منابع استراتژیک انرژی است و پیشبینی روند تقاضای آن جهت اتخاذ سیاستهای مناسب، مورد توجه سیاستگذاران و تصمیمگیرندگان است. نظر به روند پر نوسان و غیرخطی عرضه و تقاضای نفت خام و قیمت آن، روشهایی هوشمند و غیرخطی خصوصاً شبکههای عصبی مبتنی بر الگوهای تکاملی، توانستهاند توانایی خود را در پیشبینی کوتاهمدت قیمت نفت خام به اثبات برسانند. بدین منظور، قیمت نفت خام با استفاده از الگوریتم رقابت استعماری شبکههای عصبی، دادههای تولید نفت خامOPEC و مصرف کشورهای عضو سازمان همکاری اقتصادی و توسعه OECD، برای دوره زمانی ژانویه 1982 تا اکتبر 2015 مورد بررسی قرار گرفت و سپس سطح تولید و مصرف بهینه با استفاده از نظریه بازیها و تعادل نش بهدست آمد. با توجه به ضریب همبستگی ، نتایج نشان میدهد که الگوریتم رقابت استعماری، قدرت توضیح دهندگی بسیار بالایی در متغیرهای بکار رفته دارد. همچنین، خروجی شبکه عصبی و نظریه بازیها و تعادل نش میتوانند سطح بهینه تولید اوپک و مصرف نفت خام کشورهای OECD را برای دوره کوتاهمدت یکماهه پیشبینی نمایند.
similar resources
پیش بینی سطح عمومی قیمت ها و تورم در ایران با استفاده از شبکه عصبی
(صحت مطالب مقاله بر عهده نویسنده است و بیانگر دیدگاه مجمع تشخیص مصلحت نظام نیست) هدف این مقاله پیش بینی روند تورم و شاخص قیمت ها در اقتصاد ایران است. دادههای این مقاله شامل تورم سالانه و دادههای ماهانه شاخص قیمت مصرفکننده در ایران از سال 1340 تا 1392 می باشد. در این تحقیق برای پیش بینی تورم از شبکه عصبی مصنوعی استفاده شده است. برای پیشبینی تورم ماهانه از یک شبکه پسانتشار خطا(BP) با 15 نر...
full textآزمون آشوب و پیش بینی قیمت های آتی نفت خام
این مقاله به امکان سنجی وجود آشوب در ساختار سیستم مولد قیمت نفت خام شاخصWTI طی دوره 4 آوریل 1983 تا 13 ژانویه 2003 می پردازد. به این منظور از تخمین نمای لیاپانوف و بعد همبستگی به عنوان آزمون های مستقیم آشوب و آزمون های BDS و شبکه عصبی جهت بررسی غیر خطی بودن ساختار سیستم استفاده شده است. نتایج تخمین نمای لیاپانوف و بعد همبستگی، وجود آشوب در سری زمانی را تایید کرده و تخمین آماره BDS و شبکه عصبی، ...
full textپیش بینی نرخ خوردگی با استفاده از شبکه های عصبی مطالعه موردی: سیستم های بالاسری تقطیر نفت خام
هدف این تحقیق پیش بینی نرخ خوردگی با استفاده از شبکه های عصبی مصنوعی می باشد. خوردگی پدیده ای است که به علت تاثیر عوامل مختلف و متعدد شناخته شده و ناشناخته پیچیدگی بسیار زیادی دارد و به راحتی قابل مدلسازی نیست. جهت پیش بینی و مدلسازی خوردگی در رویکرد مکانیستیک به واکنش ها و فرایندهای فیزیکی، شیمیایی، و الکتروشیمیایی آن توجه می شود و مدلسازی بر اساس آنها انجام می پذیرد. با وجود موفقیت هایی که ای...
full textپیش بینی پویای قیمت نفت خام با استفاده از شبکه های عصبی مصنوعی و با بهکارگیری ذخیره سازیهای نفتی کشورهای OECD
نفت بهعنوان بزرگترین منبع تأمین انرژی در جهان و بهدلیل نقش آن در اقتصاد کشورهای تولید کننده، حائز اهمیت بسیار است. لذا شناخت پارامترهای مختلف تأثیرگذار بر بازار نفت برای این کشورها، ضروری به نظر می رسد. در این راستا، این تحقیق به پیش بینی قیمت بهعنوان یک متغیر مهم از بازار جهانی نفت، با استفاده از روش شبکه های عصبی مصنوعی و نیز روش اقتصادسنجی ARIMA می پردازد. لازم به ذکر است که این پیش...
full textوقفه های زمانی بهینه در پیش بینی قیمت نفت توسط شبکه عصبی پویا اصلاحشده با الگوریتم ژنتیک
قیمت نفت، اهمیت و نوسانات آن در طول زمان در اخذ تصمیمات مهم اقتصادی در دنیا، سبب گسترش روشهای مختلفی در پیشبینی قیمت نفت، ازجمله ابزارهای غیرخطی مانند شبکه عصبی شده است. در این مقاله برای در نظر گرفتن عامل زمان در پیشبینی توسط شبکه عصبی، با دریافت بازخورد از شبکه عصبی مصنوعی اصلاح شده با الگوریتم ژنتیک GADNN وقفههای بهینه ناشی از ورودیها و خروجیهای قیمت نفت توسط شبکه عصبی پویا محاسبه میگ...
full textMy Resources
Journal title
volume 15 issue 56
pages 179- 202
publication date 2018-06
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023