پیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از شبکه عصبی مصنوعی

Authors

  • پیمان شاهسواری دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران
Abstract:

رفتار تغییر شکل داغ مواد بدلیل وابستگی آن به تغییرات کرنش، نرخ کرنش و دما دارای پیچیدگی های قابل ملاحظه ای است و لذا پیش بینی  رفتار ماده در این شرایط مشکل می باشد. هدف از این بررسی پیش بینی رفتار تغییر شکل داغ  آلیاژ آلومینیوم 2030 با استفاده از یک شبکه عصبی مصنوعی توسعه یافته مناسب می باشد. برای این منظور از آزمایش­های فشار داغ در محدوده دمایی بین 350 تا 500 درجه سلسیوس و در نرخ کرنش­های بین 005/0 تا 5/0 بر ثانیه استفاده شد. با استفاده از نتایج تجربی حاصل از این آزمایشات، یک مدل شبکه عصبی پس انتشار پیش- سو جهت پیش­بینی رفتار تغییر شکل داغ این آلیاژ توسعه داده شد که دمای تغییر شکل، لگاریتم نرخ کرنش و کرنش بعنوان ورودی و تنش سیلان به عنوان خروجی این شبکه عصبی در نظر گرفته شد. شبکه مورد استفاده شامل یک لایه مخفی متشکل از 12 نورون با تابع انتقال هلالی مماسی و الگوریتم آموزش لونبرک – مارکارت است. بررسی نتایج پیش بینی حاکی از همبستگی بسیار خوب بین نتایج تجربی و نتایج پیش­بینی شده می باشد، که نشان دهنده توانایی بالای مدل شبکه عصبی مصنوعی توسعه یافته در پیش بینی سطوح تنش سیلان، و همچنین نواحی سخت شوندگی و نرم شوندگی دینامیکی در منحنی­های تنش -کرنش می باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی درصد متان موجود در گاز مراکز دفن زباله با استفاده از شبکه عصبی مصنوعی

Backgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill ...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...

full text

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 47  issue 2

pages  79- 86

publication date 2017-07-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023