پیش بینی دامنه تغییرات طلا با استفاده از مدل ترکیبی ARIMA و شبکه عصبی
Authors
Abstract:
مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته میشود، یکی از پرکاربردترین مدلها در پیشبینی سریهای زمانی است. اما پیش فرض اصلی این مدل خطی بودن سریهای زمانی میباشد. از سوی دیگر شبکهی عصبی یک تخمین زنندهی عمومی است که الگوهای غیر خطی را بسیار خوب مدلسازی مینماید. دانستن الگوی دادهها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این ایده در ذهن ایجاد میگردد که تلفیق مدلهای خطی و غیرخطی میتواند منجر به افزایش دقت پیشبینی گردد. از این رو، در این پژوهش بخش خطی را بوسیلهی مدل ARIMA پیشبینی کرده، آنگاه پسماندهای غیر خطی را بوسیلهی شبکهی عصبی پیشخور مدل سازی نموده و پیشبینی حاصل از آن را به مدل ARIMA ، بهمنظور پیشبینی حد بالای قیمت، حد پایین قیمت و قیمت پایانی اونس طلا (برای یک مرحله پیشرو) اضافه مینماییم. نتایج بررسی دقت مدل ترکیبی نسبت بر هر یک از مدلهای ARIMA و شبکهی عصبی بر اساس دو معیار MSE و MAE با استفاده از آزمونهای مقایسه زوجی و دایبولد- ماریانو دال بر عملکرد بهتر مدل ترکیبی است.
similar resources
پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی
پیشبینی پدیدههای اقتصادی ساختاری فراهم میکند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیمهای درست یاری دهد. هدف اصلی این مطالعه پیشبینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روشهای سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده میشود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...
full textپیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی
در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...
full textپیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی
یکی از مهمترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپردههای بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاینرو مدیران بانکها علاقهمند هستند بدانند که میزان کل سپردههای بانک در زمان معینی در آینده چقدر خواهد بود. پیشبینی میزان سپردهها، تغییر و نوسان این سپردهها میتواند در امر برنامهریزی و تصمیمگیری به بانکها کمک نماید....
full textپیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA
تبدیل موجک یکی از روشهای نوین و بسیار موثر در زمینه تحلیل سیگنالها و سریهای زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، دادههای حاصل بهعنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیشبینی خشکسالی ارائه میگردد. در این تحقیق، از شبکههای عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایهای شعاعی ((RBF، سری زمانی AR...
full textمدلسازی و پیش بینی صادرات آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه های عصبی مصنوعی
هدف اصلی این مقاله، مدلسازی و پیش بینی میزان صادرات آبزیان دریایی در ایران است. برای این منظور، از روش های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه عصبی مصنوعی استفاده می شود. به منظور انجام بررسی، از داده های ماهانه دوره 1374:03 تا 1387:12 برای برآورد و آموزش مدل و از داده های دوره از 1388:01 تا 1390:12 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده می شود. در این مطالعه، معیار...
full textMy Resources
Journal title
volume 9 issue 34
pages 335- 357
publication date 2018-03-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023