پیش بینی تبخیر- تعرق پتانسیل ماهانه با استفاده از مدلهای ماشین بردار پشتیبان، برنامهریزی ژنتیک و سیستم استنتاج عصبی – فازی
author
Abstract:
چکیده علیرغم اهمیت تبخیر-تعرق در برنامهریزی و مدیریت منابع آبی، وابستگی آن به مولفههای اقلیمی از یکسو و تاثیرپذیری این مولفهها از یکدیگر از سویی دیگر تخمین تبخیر-تعرق را دشوار ساخته است. به همین منظور، در این پژوهش، به بررسی امکان پیشبینی این مولفهی مهم در استان سیستان و بلوچستان با استفاده از مدلهای فراابتکاری از قبیل سیستم استنتاج عصبی – فازی، برنامه ریزی بیان ژن و ماشین بردار پشتیبان پرداخته شد. در این راستا، ابتدا بر اساس رابطهی فائو پنمن-مانتیث، میزان تبخیر-تعرق پتانسیل ماهانه در چهار ایستگاه سینوپتیک زاهدان، زابل، ایرانشهر و چابهار با استفاده از دادههای هواشناسی ماهانه برای یک دوره 30 ساله محاسبه گردید که این مقادیر به عنوان مرجع برای مقایسه نتایج مدلهای مورد مطالعه در تحقیق استفاده گردید. در این تحقیق با توجه به تعداد پارامترهای در نظر گرفته شده برای مدلسازی از 5 الگو استفاده شده است . الگوی 1 شامل ورودی های متوسط دمای هوا، ساعات آفتابی و رطوبت نسبی در یک ماه مشخص، الگوی 2 شامل متوسط دمای هوا، رطوبت نسبی و سرعت باد در همان ماه، الگوی 3 شامل متوسط دمای هوا، رطوبت نسبی و سرعت باد در همان ماه، الگوی 4 شامل متوسط دمای هوا، رطوبت نسبی، سرعت باد و ساعات آفتابی در همان ماه و الگوی 5 شامل متوسط دمای هوا، رطوبت نسبی، سرعت باد و ساعات آفتابی در همان ماه و یک ماه قبل میباشد. مقایسهی نتایج در مدلهای مختلف بر اساس آمارههای ضریب تبیین و جذر میانگین مربعات خطا صورت گرفت. با توجه به نتایج مشاهده میشود در مدل نروفازی در ایستگاه زاهدان الگوی 2، در ایستگاه زابل و چابهار الگوی 3 و در ایستگاه ایرانشهر الگوی 5 با مقادیر ضریب تبیین به ترتیب 945/0، 982/0، 26/0 و 443/0 از دقت بیشتری برخوردار هستند. همچنین بررسی نتایج در مدل برنامه ریزی بیان ژن نشاندهنده این است که در بخش آزمون الگوی 4 از بقیه الگوها با ضریب تبیین 974/0، 9811/0، 982/0 و 815/0 در ایستگاه های زاهدان، زابل، ایرانشهر و چابهار دارای دقت بالاتری میباشد. در مدل ماشین بردار پشتیبان نیز با توجه به مقادیر ضریب تبیین ایستگاههای زاهدان، زابل، ایرانشهر و چابهار با مقادیر 997/0، 998/0، 998/0 و 979/0 در بخش آزمون در همه ایستگاهها الگوی 5 از دقت بهتری برخوردار می باشد. مقایسه بین 3 مدل در این تحقیق نیز نشان داد که در همه ایستگاهها مدل ماشین بردار پشتیبان در مرتبه اول و سپس مدل برنامه ریزی بیان ژن و در آخر مدل نروفازی برای تخمین مقادیر تبخیر-تعرق پتانسیل ماهانه قرار دارند
similar resources
کاربرد سیستمهای استنتاج عصبی - فازی تطبیقی و برنامهریزی ژنتیک برای برآورد تبخیر تعرق ماهانه در شمالغرب ایران
تبخیر و تعرق یکی از اجزای اصلی چرخه هیدرولوژی است که تخمین دقیق آن در طراحی و مدیریت سیستمهای آبیاری، شبیهسازی تولیدات گیاهی و مدیریت منابع آب ضروری است. در این مطالعه به منظور برآورد تبخیر و تعرق گیاه مرجع با استفاده از دو مدل برنامهریزی ژنتیک (GP) و سیستم استنتاج عصبی - فازی تطبیقی (ANFIS) در مقیاس زمانی ماهانه، 6 ایستگاه سینوپتیک در منطقه شمالغرب کشور در دوره آماری 38 ساله (2010-1973) ا...
full textکاربرد سیستم های استنتاج عصبی - فازی تطبیقی و برنامه ریزی ژنتیک برای برآورد تبخیر تعرق ماهانه در شمال غرب ایران
تبخیر و تعرق یکی از اجزای اصلی چرخه هیدرولوژی است که تخمین دقیق آن در طراحی و مدیریت سیستمهای آبیاری، شبیهسازی تولیدات گیاهی و مدیریت منابع آب ضروری است. در این مطالعه به منظور برآورد تبخیر و تعرق گیاه مرجع با استفاده از دو مدل برنامهریزی ژنتیک (gp) و سیستم استنتاج عصبی - فازی تطبیقی (anfis) در مقیاس زمانی ماهانه، 6 ایستگاه سینوپتیک در منطقه شمالغرب کشور در دوره آماری 38 ساله (2010-1973) ا...
full textپیش بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی
هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (pca) بر عملکرد مدل ماشین بردار پشتیبان (svm) برای پیش بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل svm، دبی جریان ماهانه پیش بینی شد. سپس با استفاده از pca تعداد متغیرهای ورودی به مدل svm از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...
full textپیشبینی مدول برجهندگی خاکهای ریزدانه با استفاده از شبکه عصبی مصنوعی، ماشین بردار پشتیبان و سیستم استنتاج تطبیقی عصبی-فازی بهینهسازیشده با الگوریتم ازدحام ذرات
مدول برجهندگی خاک بستر ازجمله پارامترهای بسیار مهم در تحلیل و طراحی روسازی است. این پارامتر هم در روشهای تجربی (مانند اشتو 1993) و هم در روشهای مکانیستیک-تجربی (مانند MEPDG) به عنوان اصلیترین پارامتر برای بیان مقاومت و خصوصیات مکانیکی خاک بستر مورداستفاده قرار میگیرد. برای تعیین این پارامتر نیاز است تا آزمایش بارگذاری سه محوری دینامیک تحت تنشهای محدودکننده و تنشهای انحرافی مختلف بر روی ...
full textپیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی
یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدلسازی سیستمهایی که دارای پیجیدگی زیاد یا عدم صراحت بوده و یا دادههای کافی از آنها موجود نیست، استفاده از تئوری مجموعههای فازی از جمله سیستم میباشد. مزیت اصلی این تکنیک نسبت به استنتاج فازی روشهای رایج، این است که این سیستم بر اساس قواعد اگر- آنگاه بنا نهاده شده است و قادر به تعیین ارتباط بین متغیرهای ورودی و خروجی با استفاده از قواعد مزبو...
full textارزیابی مدل حداقل مربعات ماشین بردار پشتیبان در برآورد تبخیر و مقایسه با مدلهای تجربی
در این تحقیق با استفاده از پارامترهای هواشناسی در دشت بیرجند در استان خراسان جنوبی در دوره 16 ساله به ارزیابی عملکرد آزمون گاما و مقایسه دقت مدلهای حداقل مربعات ماشینبردار و روشهای تجربی بهمنظور تخمین میزان تبخیر پرداخته شد. با استفاده از روش آزمون گاما از میان پارامترهای تأثیرگذار بر تبخیر، پارامترهای بهینه ورودی جهت مدلسازی تخمین تبخیر از میان 90 ترکیب معین، تعیین گردید. تعداد 7 ترکیب ب...
full textMy Resources
Journal title
volume 7 issue 3
pages 135- 150
publication date 2017-05-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023