پیش بینی بازده بازار سرمایه با استفاده از الگوی یادگیری الگوریتم لورنبرگ مارکوات, گرادیان نزولی و الگوی آریما (ARIMA)

Authors

  • محمد محمودی گروه حسابداری، واحد فیروزکوه, دانشگاه آزاد اسلامی، فیروزکوه, ایران
Abstract:

پژوهش حاضر بر اساس ارزیابی الگوی یادگیری الگوریتم لورنبرگ مارکوات، گرادیان نزولی و الگوی آریما به مقایسه و توانایی پیش‌بینی کنندگی در بازار سرمایه می‌پردازد. بدین منظور داده‌های بازار در سال‌های 1394 تا 1397 مورد استفاده قرار گرفت و بیش از 75 درصد از این داده‌ها تا قبل از سال 1397 به عنوان داده‌های آموزشی استفاده شد و داده‌های یک سال پایانی نیز به عنوان داده‌های آزمایشی مورد استفاده قرار گرفته شده است. نتایج تحقیق نشان داده‌اند، شبکه‌های عصبی مصنوعی ظرفیت بالایی برای پیش‌بینی قیمت دارند. مقایسه نتایج و عملکرد شبکه‌های عصبی و الگوی آریما (ARIMA) حاکی از آن است که شبکه عصبی قدرت پیش‌بینی بالاتری در مقایسه با الگوی خطی آریما (ARIMA) دارد، همچنین مقایسه عملکرد و دقت پیش‌بینی دو نوع شبکه عصبی با الگوریتم یادگیری لونبرگ مارکوارت و الگوریتم یادگیری گرادیان نزولی نشان داد که استفاده از الگوریتم یادگیری لونبرگ مارکورات توانسته است دقت پیش‌بینی شبکه عصبی را افزایش داده و خطای آن را کاهش دهد، بنابراین بر پایه پژوهش انجام شده می‌توان چنین نتیجه گرفت که الگوریتم یادگیری لونبرگ مارکوارت قدرت پیش‌بینی شبکه عصبی را بهبود می‌بخشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی بازده آتی بازار سهام با استفاده از مدل‌های آریما، شبکه عصبی و نویززدایی موجک

موضوع شناخت و بررسی رفتار قیمت سهام، همواره یکی از موضوع‌های مهم و مورد توجه محافل علمی و سرمایه‌گذاری بوده است. اخیراً تعداد زیادی از پژوهشگران در پژوهش‌های خود بازار سهام را به عنوان یک سیستم پویای غیرخطی در نظر گرفته‌اند. در این پژوهش، تلاش شده است با استفاده از تبدیل موجک و شبکه عصبی مدلی ارایه شود که پیش بینی دقیق‌تر و با خطای کمتری از بازده شاخص بورس اوراق بهادار داشته باشد. در این مدل ترک...

full text

پیش بینی بازده آتی بازار سهام با استفاده از مدل های آریما، شبکه عصبی و نویززدایی موجک

موضوع شناخت و بررسی رفتار قیمت سهام، همواره یکی از موضوع های مهم و مورد توجه محافل علمی و سرمایه گذاری بوده است. اخیراً تعداد زیادی از پژوهشگران در پژوهش های خود بازار سهام را به عنوان یک سیستم پویای غیرخطی در نظر گرفته اند. در این پژوهش، تلاش شده است با استفاده از تبدیل موجک و شبکه عصبی مدلی ارایه شود که پیش بینی دقیق تر و با خطای کمتری از بازده شاخص بورس اوراق بهادار داشته باشد. در این مدل ترک...

full text

پیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی

در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...

full text

پیش بینی روند قیمت در بازار سهام با استفاده از الگوریتم جنگل تصادفی

فعالان بورس درصدد دستیابی و به کارگیری روش­هایی هستند تا بتوانند با پیش­بینی آتی قیمت سهام، سود سرمایه خود را افزایش دهند .بنابراین، ضروری به نظر می­رسد که روش­های مناسب، صحیح و متکی به اصول علمی در تعیین قیمت آینده سهام فرآروی افراد سرمایه­گذار قرار گیرد. تاکنون روش­های مختلفی جهت نیل به این هدف معرفی شده­اند که اغلب روش­های آماری و هوش مصنوعی هستند. در پژوهش حاضر با استفاده از رویکرد جنگل تصا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 44

pages  372- 397

publication date 2020-09-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023