پیش بینی بارش ماهانه ایستگاه سینوپتیک کرمانشاه با استفاده از مدل ترکیبی شبکه عصبی و موجک

Authors

Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی تبخیر-تعرق مرجع ایستگاه سینوپتیک اهواز با استفاده از مدل ترکیبی موجک – شبکه عصبی GMDH

سابقه و هدف: تخمین دقیق مقدار تبخیر-تعرق مرجع برای انجام بسیاری از تحقیقات ضروری و از مهم‌ترین مسائل در طرح‌های آبیاری و زهکشی و منابع آب به شمار می‌رود. یکی از این مسائل که می‌تواند در راستای اهداف ذکرشده اعمال شود، پیش‌بینی تبخیر-تعرق مرجع برای آینده است تا بتوان با برنامه‌ریزی‌های مناسب، امکان استفاده بهتر از منابع موجود را فراهم نمود (7). در سال‌های اخیر استفاده از روش‌های هوش مصنوعی و مدل ...

full text

پیش بینی تبخیر-تعرق مرجع ایستگاه سینوپتیک اهواز با استفاده از مدل ترکیبی موجک – شبکه عصبی gmdh

سابقه و هدف: تخمین دقیق مقدار تبخیر-تعرق مرجع برای انجام بسیاری از تحقیقات ضروری و از مهم ترین مسائل در طرح های آبیاری و زهکشی و منابع آب به شمار می رود. یکی از این مسائل که می تواند در راستای اهداف ذکرشده اعمال شود، پیش بینی تبخیر-تعرق مرجع برای آینده است تا بتوان با برنامه ریزی های مناسب، امکان استفاده بهتر از منابع موجود را فراهم نمود (7). در سال های اخیر استفاده از روش های هوش مصنوعی و مدل ...

full text

پیش‌بینی بارش ماهانه با مدل ترکیبی شبکه ‌عصبی مصنوعی-موجک و مقایسه با مدل شبکه‌ عصبی ‌مصنوعی

بدون شک اولین قدم در مدیریت رودخانه پیش­بینی بارش سطح حوضه آبریز می­باشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدل­ها هنوز هم به منظور تعریف چنین پدیدة پیچیده­ای در زمینه مهندسی هیدرولوژیک توسعه داده می­شوند. اخیراً شبکه­های ­عصبی ­مصنوعی به عنوان یک برون­یابی و درون‌یابی غیرخطی گسترده توسط هیدرولوژیست­ها مورد استفاده قرار می­گیرد. در پژوهش حاضر، تجزیه و تحلیل­ موجک ...

full text

پیش بینی بارش ماهانه با مدل درختی M5 و مقایسه آن با روشهای کلاسیک آماری )مطالعه موردی : ایستگاه سینوپتیک ارومیه(

در این تحقیق جهت تخمین داده‌های بارش ماهانه ایستگاه ارومیه که از سال 2006 تا 2007 مفقود فرض شده است از روش‌های آماری کلاسیک و مدل درختی M5 با استفاده از نرم‌افزارWeka و به کارگیری ایستگاه‌های مهاباد، خوی، سلماس، تکاب و ماکو استفاده شده است. در بین ایستگاه‌های مورد مطالعه، ایستگاه مهاباد با (r=0.90) بیشترین همبستگی را با ایستگاه ارومیه داشت. 26 سناریو از آمار ده ساله ایستگاه‌های مجاور در تخمین ب...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 22  issue 6

pages  135- 152

publication date 2016-01-21

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023