پیشنهاد توابعِ فعال سازِ بازه ای در شبکۀ عصبیِ بر پایه توابعِ شعاعی برای پیش بینی سیستم هایِ غیرِ خطیِ پویا

Authors

  • تشنه لب, محمد قطب علمی کنترل صنعتی، دانشکده مهندسی برق، گروه مهندسی برق-کنترل، دانشگاه صنعتی خواجه نصیرالدین طوسی
Abstract:

چکیده: «شبکۀ عصبیِ بر پایۀ توابعِ شعاعی » یک تقریب گر عمومی می باشد. در این مقاله «تابعِ فعال سازِ گرانولی» برای بهبودِ یادگیری این شبکه در شرایط نویزی پیشنهاد می گردد که یک تابعِ گاوسی با «انحراف استاندارد بازه ای و میانگین ثابت» است و به آن «تابعِ فعال سازِ بازه ای» نیز گفته می شود. در لایۀ میانیِ این شبکه، سه پارامترِ وابسته به توابعِ فعال سازِ گرانولی آموزش می بینند که «مرکزِ توابعِ فعال سازِ گرانولی» که مرکز دسته نامیده می شود، کرانِ پائینِ انحرافِ استاندارد و کرانِ بالایِ انحرافِ استاندارد این توابع می باشند. در لایۀ خروجی دو پارامتر دیگر یعنی «مرکزِ وزن هایِ بازه ای» و «بازۀ این وزن ها» آموزش می بینند. برای آموزش این پارامترها از روش «الگوریتم خوشه بندی K-Means» استفاده شده است. در این روش، آموزش شبکه در راستای «گرانوله سازیِ پائین به بالا» می باشد که در آن بردارهای ورودی به شکل گرانول های بزرگتر در لایۀ میانی خوشه بندی می گردند. از روش «گرادیان نزولی» نیز برای آموزش پارامترهای شبکه استفاده شده و نتایج با روش جدید مقایسه گردیده است. عملکردِ این شبکه با شناساییِ «یک سیستمِ غیر خطیِ پویایِ U شکل با پنج ورودی» و پیش بینیِ «سریِ زمانیِ آشوبِ مکی گلاس» در شرایط نویزی و بدون نویز سنجیده می شود. از نتایج معلوم می گردد که استفاده از تابعِ فعال سازِ گرانولی در ساختار شبکۀ عصبیِ RBF؛ باعث کاهش حساسیت به تغییرات ورودی شده و عملکرد آن در شرایط نویزی بهبود می یابد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیشنهاد توابعِ فعال ساز بازه ای در شبکۀ عصبیِ بر پایه توابعِ شعاعی برای پیش بینی سیستم هایِ غیرِ خطیِ پویا

چکیده: «شبکۀ عصبیِ بر پایۀ توابعِ شعاعی » یک تقریب گر عمومی می باشد. در این مقاله «تابعِ فعال ساز گرانولی» برای بهبود یادگیری این شبکه در شرایط نویزی پیشنهاد می گردد که یک تابعِ گاوسی با «انحراف استاندارد بازه ای و میانگین ثابت» است و به آن «تابعِ فعال ساز بازه ای» نیز گفته می شود. در لایۀ میانیِ این شبکه، سه پارامترِ وابسته به توابعِ فعال ساز گرانولی آموزش می بینند که «مرکز توابعِ فعال ساز گرانولی» که ...

full text

مقایسۀ توابع یادگیری شبکۀ عصبی در مدل‏سازی رواناب

پیش‏بینی دقیق جریان در رودخانه‏ها یکی از ارکان مهم در مدیریت منابع آب‏های سطحی به‌ویژه اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی‏ها‌ست. در‌حقیقت، حصول روش‏های مناسب و دقیق در پیش‏بینی جریان رودخانه‏ها را می‏توان به‌عنوان یکی از چالش‏های مهم در فرایند مدیریت و مهندسی منابع آب دانست؛ اگر‌چه تحقیقات وسیعی در خصوص کاربرد روش‏های متکی بر شبکه‏های عصبی مصنوعی دقت این روش‏ها بر روش‏های متداول آ...

full text

تقریب تابع ارزش عمل با استفاده از شبکه توابع پایه شعاعی برای یادگیری تقویتی

مشکل تنگنای ابعاد، یکی از چالش هایی است که کاربرد الگوریتم های یادگیری تقویتی گسسته را در مورد مسائل کنترلی واقعی که دارای فضای حالت و عمل بزرگ و یا پیوسته می باشند محدود نموده است. ترکیب روش های آموزشی گسسته با تقریب زننده های تابعی برای حل این مشکل چندی است مورد توجه محققان قرارگرفته است. در همین راستا در این مقاله یک الگوریتم جدید یادگیری تقویتی عصبی (NRL) بر مبنای معماری نقاد- تنها معرف...

full text

مدل‌سازی محتوای الکترونی کلی بر حسب توابع پایه شعاعی کروی در منطقه ایران

مدل‌سازی پارامترهای چگالی الکترونی یونسفر (IED) و محتوای الکترونی کلی (TEC) در تعیین موقعیت ماهواره‌ای با گیرنده‌های تک فرکانسه، مطالعات فیزیک فضا، عملکرد سیستم‌های راداری و ارتباطات مخابراتی ضروری است. مدل‌های مرجع بین‌المللی یونسفر (IRI) و نقشه‌های جهانی یونسفر (GIMs) منابع اطلاعاتی هستند که TEC را در مقیاس جهانی در اختیار کاربران قرار‌می‌دهند. این مدل‌ها از منابع داده‌های جهانی به‌دست آمده‌ا...

full text

شبکه های عصبی شعاعی آموزش یافته بر پایه متغیرهای مدل‌های آماری و مقایسه آن‌ها در پیش بینی ورشکستگی

امروزه شبکه های عصبی مصنوعی جایگاه ویژه ای در حیطه مالی پیدا کرده است. پژوهش حاضر به دنبال یافتن روش بهتر برای ساخت و آموزش شبکه های عصبی مصنوعی است که منجر به پیش بینی دقیق‌تر در موضوع ورشکستگی شود. در این میان سه شبکه عصبی از نوع توابع شعاع مدار ساخته شد که به صورت جداگانه توسط متغیرهای مدل آلتمن (1983)، اسمایوسکی (1984) و ترکیبی آموزش داده شدند. پس از سنجش توانایی سه مدل در پیش بینی ورشکستگی...

full text

استفاده از رگولاریزاسیون خطی برای پیش بینی توابع توزیع دارای چند پیک در جاذبهای ناهمگن

تابع توزیع انرژی برای جاذب های ناهمگن یکی از مهمترین مشخصات ساختمانی محسوب می شود. بدست آوردن این تابع توزیع از اهمیت خاصی برخوردار است. همانطور که می دانید میزان ماده جذب شده بر روی یک جامد ناهمگن معمولا بوسیله معادله انتگرال فردهولم نوع اول بیان می شود. معادله مذکور متشکل از یک کرنل (ایزوترم جذب ) و یک تابع توزیع نامشخص می باشد. جواب معادله انتگرالی جذب در حالت کلی ناپایدار است از این رو در ا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 4

pages  1- 25

publication date 2016-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023