پیش‌بینی قیمت مسکن در شهر تبریز:کاربرد مدل‌های قیمت هدانیک و شبکه عصبی مصنوعی

Authors

Abstract:

هدف اصلی این مطالعه مقایسه قدرت پیش بینی دو مدل رگرسیون هدانیک و شبکه عصبی مصنوعی (ANN) و تعیین یک مدل بهینه برای پیش بینی قیمت هدانیک مسکن درکلان‌شهر تبریز می باشد. نتایج تخمین تابع قیمت هدانیک بیانگر آن است که اکثر متغیرها معنا دار بوده و دارای علامت مورد انتظار می‌باشند. عوامل فیزیکی بیشتر از عوامل مکانی(محیطی و دسترسی) قیمت واحدهای مسکونی را تحت‌تأثیر قرار می دهند. همچنین، از بین ویژگی‌های فیزیکی، دارابودن سالن اجتماعات، دارا بودن استخر، تعداد اتاق ها و نمای ساختمان مهم‌ترین عوامل مؤثر بر قیمت مسکن هستند. مهم‌ترین ویژگی  مکانی اثر‌گذار بر قیمت نیز، فاصله تا مراکز آموزشی می باشد. به‌منظور مقایسه قدرت پیش بینی از معیارهای MSE، RMSE، MAE و R2 استفاده شده گردید. براساس کلیه معیارها، مدل شبکه عصبی مصنوعی خطای کمتر و در نتیجه کارایی بیشتری در پیش بینی قیمت هدانیک مسکن داشته است. همچنین، برای اینکه از لحاظ آماری نیز فرضیه برابری قدرت پیش‌بینی در مدل‌های رقیب مورد آزمون قرار گیرد از آزمون مرگان-گرنجر-‌ نیوبلد (MGN) استفاده شده گردید که نتایج آزمون بیانگر آن است که روش شبکه عصبی مصنوعی از لحاظ آماری نیز برتر از مدل هدانیک می باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی قیمت مسکن در شهر تبریز:کاربرد مدل های قیمت هدانیک و شبکه عصبی مصنوعی

هدف اصلی این مطالعه مقایسه قدرت پیش بینی دو مدل رگرسیون هدانیک و شبکه عصبی مصنوعی (ann) و تعیین یک مدل بهینه برای پیش بینی قیمت هدانیک مسکن درکلان شهر تبریز می باشد. نتایج تخمین تابع قیمت هدانیک بیانگر آن است که اکثر متغیرها معنا دار بوده و دارای علامت مورد انتظار می باشند. عوامل فیزیکی بیشتر از عوامل مکانی(محیطی و دسترسی) قیمت واحدهای مسکونی را تحت تأثیر قرار می دهند. همچنین، از بین ویژگی های ...

full text

پیش‌بینی قیمت مسکن برای شهر اهواز: مقایسه مدل هدانیک با مدل شبکه عصبی مصنوعی

Determination and the estimation of the house price in urban areas has a great importance for governments, individual and state investors and common people. The mentioned estimation can be used in future planning and decision making of many urban and regional policies. In this regard, due to the vital importance of the house price in recent decades powerful and effective functions have been use...

full text

برآورد قیمت مسکن شهری با استفاده از تابع هدانیک و شبکه های عصبی مصنوعی مورد شناسی: کوی ولیعصر شهر تبریز

مسکن به عنوان یک کالای ناهمگن، بادوام، غیر منقول، سرمایه ای و مصرفی با پیامدهای جانبی، سهم زیادی از بودجه خانوارها را به خود اختصاص می دهد و همچنین نقش زیادی در اشتغال و ارزش افزوده کشورها دارد؛ بنابراین، تعیین و برآورد قیمت مسکن برای برنامه ریزان و تصمیم گیران، از اهمیت بسیار بالایی برخوردار است. این برآورد به ویژه اگر بتواند سهم عوامل تأثیر گذار در ارزش مسکن را به خوبی منعکس کند، می تواند در ...

full text

تخمین قیمت مسکن شهر اهواز با استفاده از شبکه عصبی

In the economy of every society, housing is a basic need that should be considered. Hence, development in the housing sector has its effect on other economy sectors. So one of the significant needs of governments in the housing field is the housing price forecasts and determine the factors affecting the price of this product. The present research aimed to estimate the cost of housing and the fa...

full text

بررسی عوامل مؤثر بر قیمت زعفران (کاربرد الگوی قیمت‌گذاری هدانیک و شبکه عصبی مصنوعی)

زعفران به عنوان محصولی کشاورزی ارزشمند در سطح ملی و بین­المللی، به شیوه­های مختلفی توسط مصرف­کنندگان ارزش‌گذاری می­شود و قیمتی که برای آن پرداخت می­شود به عوامل متعددی بستگی دارد. با شناسایی این عوامل می­توان زعفران را با قیمتی در بازار عرضه نمود که مطابق با ترجیحات مصرف­کننده باشد. لذا، هدف اصلی این مطالعه ارزیابی عوامل مؤثر بر قیمت زعفران در شهر مشهد با استفاده از مدل قیمت­گذاری هدانیک است. و...

full text

برآورد قیمت مسکن شهری با استفاده از تابع هدانیک و شبکه‌های عصبی مصنوعی مورد شناسی: کوی ولیعصر شهر تبریز

مسکن به‌عنوان یک کالای ناهمگن، بادوام، غیر‌منقول، سرمایه‌ای و مصرفی با پیامدهای جانبی، سهم زیادی از بودجة خانوارها را به خود اختصاص می‌دهد و همچنین نقش زیادی در اشتغال و ارزش افزودة کشورها دارد؛ بنابراین، تعیین و برآورد قیمت مسکن برای برنامه‌ریزان و تصمیم‌گیران، از اهمیت بسیار بالایی برخوردار است. این برآورد به‌ویژه اگر بتواند سهم عوامل تأثیر‌گذار در ارزش مسکن را به خوبی منعکس کند، می‌تواند در ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 19  issue 60

pages  113- 138

publication date 2012-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023