پیش‌بینی سرعت باد با شبکه عصبی RBF بر اساس نظریة آشوب

Authors

  • طیبه خانجانی - دانشجوی کارشنای ارشد، گروه مهندسی برق- دانشکده فنی و مهندسی- دانشگاه اصفهان- اصفهان- ایران
  • محمد عطایی - دانشیار، گروه مهندسی برق- دانشکده فنی و مهندسی - دانشگاه اصفهان- اصفهان- ایران
  • پیمان معلم استاد، گروه مهندسی برق- دانشکده فنی و مهندسی -دانشگاه اصفهان- اصفهان- ایران
Abstract:

پیش‌بینی سرعت باد در مواردی همچون کنترل و برنامه‌ریزی جهت قطع و وصل توربین­های بادی و تضمین عملکرد پایدار سیستم می­تواند حائز اهمیت باشد که به‌طور کلاسیک به روش­های متعددی صورت می­گیرد. در این مقاله، ارائه روشی صرفاً براساس آنالیز داده­های اندازه­گیری‌شدة قبلی مدّ نظر است. به این منظور، ضمن بررسی آشوبناک‌بودن داده­های سرعت باد، با ترکیب مفاهیم مربوط به نظریه آشوب و تکنیک­های موجود در پیش‌بینی با استفاده از شبکه­های عصبی، روشی جهت پیش‌بینی سرعت باد پیشنهاد شده است. داده­های استفاده‌شده در این تحقیق، اطلاعات ثبت‌شده در ایستگاه ورزنه استان اصفهان است. در این راستا، ابتدا با استفاده از محاسبة بُعد همبستگی از روی سری زمانی مفروض، آشوبناک‌بودن دینامیک سیستم مولد این داده­ها اثبات شده و سپس فضای حالت سیستم دینامیکی مولد بازسازی شده است. بدین‌منظور از روش FNN برای محاسبه بعد محاط و از روش AMI برای محاسبه زمان تأخیر جهت بازسازی فضای حالت استفاده شده است. در ادامه شبکه عصبی RBF جهت پیش‌بینی سرعت باد پیشنهاد شده است که ساختار آن با استفاده از اطلاعات بعد محاط و زمان تأخیر محاسبه‌شده طراحی شده است. در پایان، روش پیشنهادی بر روی داده­های عملی، اعمال و نتایج بیان شده است.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی سرعت باد با شبکه عصبی rbf بر اساس نظریه آشوب

پیش بینی سرعت باد در مواردی همچون کنترل و برنامه ریزی جهت قطع و وصل توربین­های بادی و تضمین عملکرد پایدار سیستم می­تواند حائز اهمیت باشد که به طور کلاسیک به روش­های متعددی صورت می­گیرد. در این مقاله، ارائه روشی صرفاً براساس آنالیز داده­های اندازه­گیری شده قبلی مدّ نظر است. به این منظور، ضمن بررسی آشوبناک بودن داده­های سرعت باد، با ترکیب مفاهیم مربوط به نظریه آشوب و تکنیک­های موجود در پیش بینی با ...

full text

پیش بینی سرعت باد بر اساس نظریه آشوب

پیش بینی سرعت باد در مواردی همچون کنترل توربین های بادی، برنامه ریزی جهت قطع و وصل توربین¬های بادی و تضمین عملکرد پایدار سیستم توزیع می¬تواند حائز اهمیت باشد که به طور کلاسیک به روش¬های متعددی صورت می¬گیرد. در این پایان نامه ارائه روشی صرفاً بر اساس آنالیز داده¬های اندازه¬گیری شده قبلی مدنظر می¬باشد. به این منظور ضمن بررسی آشوبناک بودن داده¬های سرعت باد، با ترکیب مفاهیم مربوط به نظریه آشوب و تکن...

تخمین اقتصادی رزرو مورد نیاز مزارع بادی با بکارگیری شبکه عصبی در پیش‌بینی سرعت باد

Nowadays, increasing the renewable energy applications in power system, especially wind power, has caused higher imbalance probability between generation and demand. Therefore, an accurate estimation of wind farm reserve requirements and the reserve cost reduction in power systems with high wind power penetration is very important. In this paper, the reserve requirements of a wind farm are esti...

full text

پیش بینی کوتاه مدت سرعت باد با استفاده از سه نوع ترکیب شبکه های عصبی براساس تقسیم و ترکیب

انرژی باد یکی از قابل دسترس ترین انرژی های تجدید پذیر است. پیش بینی سرعت باد با دقت بالا، برای توسعه این انرژی موثر خواهد بود. این مقاله راه حل مناسبی برای مساله پیش بینی سرعت باد، با استفاده از سه نوع شبکه عصبی براساس تقسیم و ترکیب ارائه می دهد. سه شبکه، به ترتیب، تقویت به وسیله پالایش (BF)، اختلاط خبره ها (ME) و تقویت اختلاط خبره ها (BME) می باشند. در این سه شبکه ابتدا، فضای مساله بین کلاس بن...

full text

پیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی

پیش‌بینی محل وقوع زلزله‌های آتی همراه با تعیین درصد احتمال رخداد، می‌تواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محل‌های پیش‌بینی شده، سبب افزایش توجه به طراحی، به‌سازی لرزه­ای و ارزیابی قابلیت اعتمادپذیری سازه‌های موجود در این مکان‌ها می‌شود. در پیش‌بینی زمان وقوع زلزله فرضیه‌ها و نظریه‌های گسترده‌ای مطرح است. هنوز شیوه‌ای دقیق برای پیش‌بینی زمان رخداد زلزله‌های آتی مورد تأیید ق...

full text

کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی

پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3

pages  87- 96

publication date 2016-10-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023