پیش‌بینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)

Authors

Abstract:

مدل‌های داده محور از جمله ابزارهایی هستند که به منظور شبیه‌سازی در علوم مختلف استفاده می‌شوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدل‌ها با شبیه‌سازی فرآیند بارش-رواناب، مقدار رواناب را در حوزه‌های آبخیز بدون ایستگاه اندازه‌گیری و با حداقل زمان ممکن و کمترین هزینه برآورد می‌کنند. هدف از انجام این تحقیق شبیه‌سازی رواناب روزانه با کمک ماشین بردار پشتیبان و همچنین مقایسه نتایج آن با مدل هیدرولوژیکی Hymod می‌باشد. مدل Hymod نیز مدلی مفهومی بوده که رواناب را با استفاده از داده‌های بارش و تبخیر-تعرق پتانسیل روزانه محاسبه می‌نماید. ارزیابی روش-های پیش‌بینی رواناب مذکور با استفاده از داده‌های روزانه بارش و تبخیر-تعرق پتانسیل برای 5 سال (1958-1962) در حوضه معرف رودخانه لیف آمریکا به مساحت 1950 کیلومتر مربع انجام گردید. مقادیر آماره‌های کلینگ گوپتا (KGE)، ضریب تعیین (R2) و ضریب ناش- ساتکلیف (NSE) به ترتیب در روش ماشین بردار پشتیبان 80/0 ، 79/0و 78/0 و در مدل Hymod، 68/0، 79/0و 76/0 به دست آمد. نتایج نشان از برتری نسبی روش ماشین بردار پشتیبان به شبیه‌سازی مدل مفهومیHymod داد و بنابراین نتایج این ابزار می‌تواند در حوضه‌های بدون آمار به عنوان تخمین قابل قبول اولیه مورد لحاظ قرار گیرد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (ls-svm)

مدل های داده محور از جمله ابزارهایی هستند که به منظور شبیه سازی در علوم مختلف استفاده می شوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدل ها با شبیه سازی فرآیند بارش-رواناب، مقدار رواناب را در حوزه های آبخیز بدون ایستگاه اندازه گیری و با حداقل زمان ممکن و کمترین هزینه برآورد می کنند. هدف ا...

full text

طراحی شبکه پایش سطح آب زیر‏زمینی با استفاده از مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)

این مطالعه روشی برای طراحی شبکه‏های پایش کمّی آب زیر‏زمینی به ‏منظور کاهش نقاط پایش مکانی اضافی ارائه می‏کند؛ چاه‏های اضافی، که اگر نمونه‏گیری نشوند، خطا‏ی تخمین سطح آب زیر‏زمینی آن‌ها قابل چشم‌پوشی است. این روش مبتنی بر روش ماشین بردار پشتیبان بر پایة تئوری یادگیری آماری است. در این مطالعه، با استفاده از اطلاعات کمّی 63 چاه‏ مشاهداتی و پارامتر‏های هواشناسی (بارندگی و تبخیر) دشت رامهرمز، در دورة ...

full text

طراحی شبکه پایش سطح آب زیر‏زمینی با استفاده از مدل حداقل مربعات ماشین بردار پشتیبان (ls-svm)

این مطالعه روشی برای طراحی شبکه‏های پایش کمّی آب زیر‏زمینی به ‏منظور کاهش نقاط پایش مکانی اضافی ارائه می‏کند؛ چاه‏های اضافی، که اگر نمونه‏گیری نشوند، خطا‏ی تخمین سطح آب زیر‏زمینی آن ها قابل چشم پوشی است. این روش مبتنی بر روش ماشین بردار پشتیبان بر پایة تئوری یادگیری آماری است. در این مطالعه، با استفاده از اطلاعات کمّی 63 چاه‏ مشاهداتی و پارامتر‏های هواشناسی (بارندگی و تبخیر) دشت رامهرمز، در دورة ...

full text

ارزیابی مدل حداقل مربعات ماشین بردار پشتیبان در برآورد تبخیر و مقایسه با مدلهای تجربی

در این تحقیق با استفاده از پارامترهای هواشناسی در دشت بیرجند در استان خراسان جنوبی در دوره 16 ساله به ارزیابی عملکرد آزمون گاما و مقایسه دقت مدل‌های حداقل مربعات ماشین­بردار و روش‌های تجربی به‌منظور تخمین میزان تبخیر پرداخته شد.  با استفاده از روش آزمون گاما از میان پارامترهای تأثیرگذار بر تبخیر، پارامترهای بهینه ورودی جهت مدل‌سازی تخمین تبخیر از میان 90 ترکیب معین، تعیین گردید. تعداد 7 ترکیب ب...

full text

رویکرد حداقل مربعات ماشین بردار پشتیبان مبتنی بر الگوریتم ژنتیک جهت تخمین رتبه اعتباری مشتریان بانک‌ها

یکی از مهم¬ترین مسائلی که همواره بانک¬ها و مؤسسات مالی با آن مواجه هستند، مسئله ریسک اعتباری یا احتمال عدم ایفای تعهدات از سوی متقاضیان دریافت کننده تسهیلات اعتباری می¬باشد. رقم قابل توجه مطالبات معوق بانک‌ها در سراسر جهان نشان دهنده اهمیت این موضوع و لزوم توجه به آن می¬باشد. از این رو تاکنون تلاش‌های بسیاری به منظور ارائه مدلی کارا جهت ارزیابی و طبقه بندی هرچه دقیق¬تر متقاضیان تسهیلات اعتباری ...

full text

ارزیابی مدل ترکیبی موجک – حداقل مربعات ماشین بردار پشتیبان در ریزمقیاس کردن مکانی - زمانی سری های زمانی بارش

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک – حداقل مربعات ماشین بردا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 6

pages  293- 304

publication date 2015-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023